brain volume
Recently Published Documents


TOTAL DOCUMENTS

1601
(FIVE YEARS 488)

H-INDEX

85
(FIVE YEARS 9)

2022 ◽  
Vol 13 ◽  
Author(s):  
Yasue Uchida ◽  
Yukiko Nishita ◽  
Rei Otsuka ◽  
Saiko Sugiura ◽  
Michihiko Sone ◽  
...  

Brain reserve is a topic of great interest to researchers in aging medicine field. Some individuals retain well-preserved cognitive function until they fulfill their lives despite significant brain pathology. One concept that explains this paradox is the reserve hypothesis, including brain reserve that assumes a virtual ability to mitigate the effects of neuropathological changes and reduce the effects on clinical symptoms flexibly and efficiently by making complete use of the cognitive and compensatory processes. One of the surrogate measures of reserve capacity is brain volume. Evidence that dementia and hearing loss are interrelated has been steadily accumulating, and age-related hearing loss is one of the most promising modifiable risk factors of dementia. Research focused on the imaging analysis of the aged brain relative to auditory function has been gradually increasing. Several morphological studies have been conducted to understand the relationship between hearing loss and brain volume. In this mini review, we provide a brief overview of the concept of brain reserve, followed by a small review of studies addressing brain morphology and hearing loss/hearing compensation, including the findings obtained from our previous study that hearing loss after middle age could affect hippocampal and primary auditory cortex atrophy.


2022 ◽  
Vol 48 (1) ◽  
Author(s):  
Jong Ho Cha ◽  
Jung-Sun Lim ◽  
Yong Hun Jang ◽  
Jae Kyoon Hwang ◽  
Jae Yoon Na ◽  
...  

Abstract Background Necrotizing enterocolitis (NEC) is a devastating disease in preterm infants with significant morbidities, including neurodevelopmental impairment (NDI). This study aimed to investigate whether NEC is associated with (1) brain volume expansion and white matter maturation using diffusion tensor imaging analysis and (2) NDI compared with preterm infants without NEC. Methods We included 86 preterm infants (20 with NEC and 66 without NEC) with no evidence of brain abnormalities on trans-fontanelle ultrasonography and magnetic resonance imaging at term-equivalent age (TEA). Regional brain volume analysis and white matter tractography were performed to study brain microstructure alterations. NDI was assessed using the Bayley Scales of Infant and Toddler Development-III (BSID-III) at 18 months of corrected age (CA). Results Preterm infants with NEC showed significantly high risk of motor impairment (odds ratio 58.26, 95% confidence interval 7.80–435.12, p < 0.001). We found significantly increased mean diffusivity (MD) in the splenium of corpus callosum (sCC) (p = 0.001) and the left corticospinal tract (p = 0.001) in preterm infants with NEC. The sCC with increased MD showed a negative association with the BSID-III language (p = 0.025) and motor scores (p = 0.002) at 18 months of CA, implying the relevance of sCC integrity with later NDI. Conclusion The white matter microstructure differed between preterm infants with and without NEC. The prognostic value of network parameters of sCC at TEA may provide better information for the early detection of NDI in preterm infants.


2022 ◽  
Vol 15 ◽  
Author(s):  
Eilidh MacNicol ◽  
Paul Wright ◽  
Eugene Kim ◽  
Irene Brusini ◽  
Oscar Esteban ◽  
...  

Age-specific resources in human MRI mitigate processing biases that arise from structural changes across the lifespan. There are fewer age-specific resources for preclinical imaging, and they only represent developmental periods rather than adulthood. Since rats recapitulate many facets of human aging, it was hypothesized that brain volume and each tissue's relative contribution to total brain volume would change with age in the adult rat. Data from a longitudinal study of rats at 3, 5, 11, and 17 months old were used to test this hypothesis. Tissue volume was estimated from high resolution structural images using a priori information from tissue probability maps. However, existing tissue probability maps generated inaccurate gray matter probabilities in subcortical structures, particularly the thalamus. To address this issue, gray matter, white matter, and CSF tissue probability maps were generated by combining anatomical and signal intensity information. The effects of age on volumetric estimations were then assessed with mixed-effects models. Results showed that herein estimation of gray matter volumes better matched histological evidence, as compared to existing resources. All tissue volumes increased with age, and the tissue proportions relative to total brain volume varied across adulthood. Consequently, a set of rat brain templates and tissue probability maps from across the adult lifespan is released to expand the preclinical MRI community's fundamental resources.


2022 ◽  
Vol 13 ◽  
Author(s):  
Shan Ye ◽  
Yishan Luo ◽  
Pingping Jin ◽  
Yajun Wang ◽  
Nan Zhang ◽  
...  

Background: Increasing evidence has shown that amyotrophic lateral sclerosis (ALS) can result in abnormal energy metabolism and sleep disorders, even before motor dysfunction. Although the hypothalamus and thalamus are important structures in these processes, few ALS studies have reported abnormal MRI structural findings in the hypothalamus and thalamus.Purpose: We aimed to investigate volumetric changes in the thalamus and hypothalamus by using the automatic brain structure volumetry tool AccuBrain®.Methods: 3D T1-weighted magnetization-prepared gradient echo imaging (MPRAGE) scans were acquired from 16 patients with ALS with normal cognitive scores and 16 age-, sex- and education-matched healthy controls. Brain tissue and structure volumes were automatically calculated using AccuBrain®.Results: There were no significant differences in bilateral thalamic (F = 1.31, p = 0.287) or hypothalamic volumes (F = 1.65, p = 0.213) between the ALS and control groups by multivariate analysis of covariance (MANCOVA). Left and right hypothalamic volumes were correlated with whole-brain volume in patients with ALS (t = 3.19, p = 0.036; t = 3.03, p = 0.044), while the correlation between age and bilateral thalamic volumes tended to be significant after Bonferroni correction (t = 2.76, p = 0.068; t = 2.83, p = 0.06). In the control group, left and right thalamic volumes were correlated with whole-brain volume (t = 4.26, p = 0.004; t = 4.52, p = 0.004).Conclusion: Thalamic and hypothalamic volumes did not show differences between patients with normal frontotemporal function ALS and healthy controls, but further studies are still needed.


2022 ◽  
Author(s):  
Belinda M Brown ◽  
Jaisalmer de Frutos Lucas ◽  
Tenielle Porter ◽  
Natalie Frost ◽  
Michael Vacher ◽  
...  

Background: Grey matter atrophy occurs as a function of ageing and is accelerated in dementia. Previous research suggests physical activity attenuates grey matter loss; however, there appears to be individual variability in this effect. Understanding factors that can affect the relationship between physical activity and brain volume may enable prediction of individual response, and aid in identifying those that gain the greatest neural benefits from physical activity. The current study examined the relationship between objectively-measured physical activity and brain volume; and whether this relationship is moderated by age, sex, or a priori candidate genetic factors. Methods: Data from 10,083 men and women (50 years and over) of the UK Biobank were used to examine: 1) the relationship between objectively-measured physical activity and brain volume; and 2) whether the relationship between objectively-measured physical activity and brain volume is moderated by age, sex, brain-derived neurotrophic factor (BDNF) Val66Met, or apolipoprotein (APOE) e4 allele carriage. All participants underwent a magnetic resonance imaging scan to quantify grey matter volumes, physical activity monitoring via accelerometry, and genotyping. Results: Physical activity was associated with total grey matter volume (B = 0.14, p = 0.001, q = 0.005) and right hippocampal volume (B = 1.45, p = 0.008, q = 0.016). The physical activity*sex interaction predicted cortical grey matter (B = 0.22, p = 0.003, q = 0.004), total grey matter (B = 0.30, p < 0.001, q = 0.001), and right hippocampal volume (B = 3.60, p = 0.001, q = 0.002). Post-hoc analyses revealed males received benefit from higher physical activity levels, in terms of greater cortical grey matter volume (B = 0.13, p = 0.01), total grey matter volume (B=0.23, p < 0.001), and right hippocampal volume (B = 3.05, p = 0.008). No moderating effects of age, APOE e4 allele carriage, or BDNF Val66Met genotype were observed. Discussion: Our results indicate that in males, but not females, an association exists between objectively-measured physical activity and grey matter volume. Future research should evaluate longitudinal brain volumetrics to better understand the nature of sex-effects on the relationship between physical activity and brain volume.


2022 ◽  
Vol 8 (1) ◽  
pp. 205521732110707
Author(s):  
Satori Ajitomi ◽  
Juichi Fujimori ◽  
Ichiro Nakashima

Background Two-dimensional (2D) measures have been proposed as potential proxies for whole-brain volume in multiple sclerosis (MS). Objective To verify whether 2D measurements by routine MRI are useful in predicting brain volume or disability in MS. Methods In this cross-sectional analysis, eighty-five consecutive Japanese MS patients—relapsing-remitting MS (81%) and progressive MS (19%)—underwent 1.5 Tesla T1-weighted 3D MRI examinations to measure whole-brain and grey matter volume. 2D measurements, namely, third ventricle width, lateral ventricle width (LVW), brain width, bicaudate ratio, and corpus callosum index (CCI), were obtained from each scan. Correlations between 2D measurements and 3D measurements, the Expanded Disability Status Scale (EDSS), or processing speed were analysed. Results The third and lateral ventricle widths were well-correlated with the whole-brain volume ( p < 0.0001), grey matter volume ( p < 0.0001), and EDSS scores ( p = 0.0001, p = .0004, respectively).The least squares regression model revealed that 78% of the variation in whole-brain volume could be explained using five explanatory variables, namely, LVW, CCI, age, sex, and disease duration. By contrast, the partial correlation coefficient excluding the effect of age showed that the CCI was significantly correlated with the EDSS and processing speed ( p < 0.0001). Conclusion Ventricle width correlated well with brain volumes, while the CCI correlated well with age-independent (i.e. disease-induced) disability.


Neurology ◽  
2021 ◽  
Vol 98 (1 Supplement 1) ◽  
pp. S10.1-S10
Author(s):  
Michael Johnathan Char Bray ◽  
Jerry Tsai ◽  
Barry Bryant ◽  
Bharat Narapareddy ◽  
Lisa N. Richey ◽  
...  

ObjectiveTo evaluate the relationship between professional fighter weight class and neuropsychiatric outcomes.BackgroundTraumatic brain injury (TBI) is a common source of functional impairment among athletes, military personnel, and the general population. Professional fighters in both boxing and mixed martial arts (MMA) are at particular risk for repetitive TBI and may provide valuable insight into both the pathophysiology of TBI and its consequences. Currently, effects of fighter weight class on brain volumetrics (regional and total) and functional outcomes are unknown.Design/Methodsn = 53 boxers and n = 103 MMA fighters participating in the Professional Fighters Brain Health Study (PRBHS) underwent volumetric magnetic resonance imaging (MRI) and neuropsychological testing. Fighters were divided into lightweight (=139.9 lb), middleweight (140.0–178.5 lb), and heavyweight (>178.5 lb).ResultsCompared with lightweight fighters, heavyweights displayed greater yearly reductions in regional brain volume (boxers: bilateral thalami; MMA: left thalamus, right putamen) and functional performance (boxers: processing speed, simple and choice reaction; MMA: Trails A and B tests). Lightweights suffered greater reductions in regional brain volume on a per-fight basis (boxers: left thalamus; MMA: right putamen). Heavyweight fighters bore greater yearly burden of regional brain volume and functional decrements, possibly related to differing fight dynamics and force of strikes in this division. Lightweights demonstrated greater volumetric decrements on a per-fight basis.ConclusionsAlthough more research is needed, greater per-fight decrements in lightweights may be related to practices of weight-cutting, which may increase vulnerability to neurodegeneration post-TBI. Observed decrements associated with weight class may result in progressive impairments in fighter performance, suggesting interventions mitigating the burden of TBI in professional fighters may both improve brain health and increase professional longevity.


2021 ◽  
pp. 1-34
Author(s):  
Shang-ying Tsai ◽  
Martha Sajatovic ◽  
Jung-Lung Hsu ◽  
Kuo-Hsuan Chung ◽  
Pao-Huan Chen ◽  
...  

Abstract Background: Neuroinflammation and brain structural abnormalities are found in bipolar disorder (BD). Elevated levels of cytokines and chemokines have been detected in the serum and cerebrospinal fluid of patients with BD. This study investigated the association between peripheral inflammatory markers and brain subregion volumes in BD patients. Methods: Euthymic patients with bipolar I disorder (BD-I) aged 20 to 45 years underwent whole-brain magnetic resonance imaging. Plasma levels of monocyte chemoattractant protein-1, chitinase-3-like protein 1 (also known as YKL-40), fractalkine, soluble tumor necrosis factor receptor-1 (sTNF-R1), interleukin-1β, and transforming growth factor-β1 were measured on the day of neuroimaging. Clinical data were obtained from medical records and interviewing patients and reliable others. Results: We recruited 31 patients with a mean age of 29.5 years. In multivariate regression analysis, plasma level YKL-40, a chemokine, was the most common inflammatory marker among these measurements displaying significantly negative association with the volume of various brain subareas across the frontal, temporal, and parietal lobes. Higher YKL-40 and sTNF-R1 levels were both significantly associated with lower volumes of the left anterior cingulum, left frontal lobe, right superior temporal gyrus and supramarginal gyrus. A greater number of total lifetime mood episodes was also associated with smaller volumes of the right caudate nucleus and bilateral frontal lobes. Conclusions: The volume of brain regions known to be relevant to BD-I may be diminished in relation to higher plasma level of YKL-40, sTNF-R1, and more lifetime mood episodes. Macrophage and macrophage-like cells may be involved in brain volume reduction among BD-I patients.


Author(s):  
Song E Kim ◽  
Soriul Kim ◽  
Hyeon Jin Kim ◽  
Regina E Y Kim ◽  
Sol Ah Kim ◽  
...  

Abstract Background Although a connection between sleep disruption and brain aging has been documented, biological mechanisms need to be further clarified. Intriguingly, aging is associated with circadian rhythm and/or sleep dysfunction in a key gene regulating circadian rhythm, CLOCK, have been linked to both aging-related sleep disturbances and neurodegenerative diseases. This study aims to investigate how CLOCK genetic variation associates with sleep duration changes and/or volumetric brain alteration. Methods This population-based cross-sectional study used data from the Korean Genome Epidemiology Study (KoGES), and analyzed sleep characteristics and genetic and brain imaging data in 2,221 subjects (mean 58.8±6.8 years, 50.2% male). Eleven single-nucleotide polymorphisms (SNPs) in CLOCK were analyzed using PLINK software v1.09 to test for their association with sleep duration and brain volume. Haplotype analysis was performed by using pair-wise linkage disequilibrium (LD) of CLOCK polymorphisms, and multivariate analysis of covariance was for statistical analysis. Results Decreased sleep duration was associated with several SNPs in CLOCK intronic regions, with the highest significance for rs10002541 (P=1.58x10 -5). Five SNPs with the highest significance (rs10002541-rs6850524-rs4580704- rs3805151-rs3749474) revealed that CGTCT was the most prevalent. In the major CGTCT haplotype, decreased sleep duration over time was associated with lower cortical volumes predominantly in frontal and parietal regions. Less common haplotypes (GCCTC/CGTTC) had shorter sleep duration and more decreases in sleep duration over 8 years, which revealed smaller total and gray matter volumes, especially in frontal and temporal regions of the left hemisphere. Conclusion CLOCK genetic variations could be involved in age-related sleep and brain volume changes.


Sign in / Sign up

Export Citation Format

Share Document