Anomalous origin of the main stem of the left coronary artery from the pulmonary trunk presenting with left ventricular hypertrophy

2007 ◽  
Vol 17 (01) ◽  
pp. 78 ◽  
Author(s):  
Liat Gelernter-Yaniv ◽  
Avraham Lorber
2008 ◽  
Vol 18 (4) ◽  
pp. 372-378 ◽  
Author(s):  
M. Muneer Amanullah ◽  
Anthony J. Rostron ◽  
J. R. Leslie Hamilton ◽  
Milind P. Chaudhari ◽  
Asif Hasan

AbstractBackgroundAnomalous origin of the left coronary artery from the pulmonary trunk is rare, occurring at an incidence of 1 in 300 000. If not diagnosed and treated early, it is life-threatening. Children with the anomaly usually present in infancy with congestive cardiac failure, and are occasionally referred for cardiac transplant. We investigated the medium term outcome for patients following creation of a two-coronary arterial circulation.MethodsBetween 1992 and 2007, we diagnosed 15 patients seen at our Institution as having anomalous origin of the left coronary artery from the pulmonary trunk. Over a period of 13 years, aortic reimplantation was undertaken in 12 of these patients, who form the studied cohort.ResultsDirect reimplantation was performed in 5 patients. In 3 cases, a tension-free anastomosis was created using a caudally based flap. In another 3 cases, an extended flap was used, while a patch arterioplasty was fashioned in the final patient. There were no deaths. Left ventricular function recovered in all but one of the patients, and all patients had a reduction in the degree of mitral regurgitation.ConclusionsAmong the variety of surgical techniques, transfer of the anomalous left coronary artery to the aorta is the ideal method for long-term patency and adequate blood supply. This can be achieved by creating flaps based on the walls of the pulmonary trunk and aorta, producing a dual coronary arterial supply with no mortality and low morbidity.


2007 ◽  
Vol 17 (S4) ◽  
pp. 56-67 ◽  
Author(s):  
Alan H. Friedman ◽  
Mark A. Fogel ◽  
Paul Stephens ◽  
Jeffrey C. Hellinger ◽  
David G. Nykanen ◽  
...  

AbstractThe coronary arteries, the vessels through which both substrate and oxygen are provided to the cardiac muscle, normally arise from paired stems, right and left, each arising from a separate and distinct sinus of the aortic valve. The right coronary artery runs through the right atrioventricular groove, terminating in the majority of instances in the inferior interventricular groove. The main stem of the left coronary artery bifurcates into the anterior descending, or interventricular, and the circumflex branches. Origin of the anterior descending and circumflex arteries from separate orifices from the left sinus of Valsalva occurs in about 1% of the population, while it is also frequent to find the infundibular artery arising as a separate branch from the right sinus of Valsalva.Anomalies of the coronary arteries can result from rudimentary persistence of an embryologic coronary arterial structure, failure of normal development or normal atrophy as part of development, or misplacement of connection of a an otherwise normal coronary artery. Anomalies, therefore, can be summarized in terms of abnormal origin or course, abnormal number of coronary arteries, lack of patency of the orifice of coronary artery, or abnormal connections of the arteries.Anomalous origin of the left coronary artery from the pulmonary trunk occurs with an incidence of approximately 1 in 300,000 children. The degree of left ventricular dysfunction produced likely relates to the development of collateral vessels that arise from the right coronary artery, and provide flow into the left system. Anomalous origin of either the right or the left coronary artery from the opposite sinus of Valsalva can be relatively innocuous, but if the anomalous artery takes an interarterial course between the pulmonary trunk and the aorta, this can underlie sudden death, almost invariably during or immediately following strenuous exercise or competitive sporting events. Distal anomalies of the coronary arteries most commonly involve abnormal connections, or fistulas, between the right or left coronary arterial systems and a chamber or vessel.We discuss the current techniques available for imaging these various lesions, along with their functional assessment, concluding with a summary of current strategies for management.


2010 ◽  
Vol 20 (S3) ◽  
pp. 20-25 ◽  
Author(s):  
Anthony Hlavacek ◽  
Marios Loukas ◽  
Diane Spicer ◽  
Robert H. Anderson

AbstractIn the normal heart, the right and left coronary arteries arise from the aortic valvar sinuses adjacent to the pulmonary trunk. The right coronary artery then directly enters the right atrioventricular groove, whereas the main stem of the left coronary artery runs a short course before dividing to become the anterior interventricular and circumflex arteries. These arteries can have an anomalous origin from either the aorta or pulmonary trunk; their branches can have various anomalous origins relative to arterial pedicles. Other abnormal situations include myocardial bridging, abnormal communications, solitary coronary arteries, and duplicated arteries. Understanding of these variations is key to determining those anomalous patterns associated with sudden cardiac death. In the most common variant of an anomalous origin from the pulmonary trunk, the main stem of the left coronary artery arises from the sinus of the pulmonary trunk adjacent to the anticipated left coronary arterial aortic sinus. The artery can, however, arise from a pulmonary artery, or the right coronary artery can have an anomalous pulmonary origin. The key feature in the anomalous aortic origin is the potential for squeezing of the artery, produced by either the so-called intramural origin from the aorta, or the passage of the abnormal artery between the aortic root and the subpulmonary infundibulum.


2021 ◽  
pp. 1-6
Author(s):  
Tong Feng ◽  
Guo Zhangke ◽  
Bai Song ◽  
Fan Fan ◽  
Zhen Jia ◽  
...  

Abstract Objectives: Anomalous origin of the left coronary artery from the pulmonary artery is associated with high mortality if not timely surgery. We reviewed our experience with anomalous origin of the left coronary artery from the pulmonary artery to assess the preoperative variables predictive of outcome and post-operative recovery of left ventricular function. Methods: A retrospective review was conducted and collected data from patients who underwent anomalous origin of the left coronary artery from the pulmonary artery repair at our institute from April 2005 to December 2019. Left ventricular function was assessed by ejection fraction and the left ventricular end-diastolic dimension index. The outcomes of reimplantation repair were analysed. Results: A total of 30 consecutive patients underwent anomalous origin of the left coronary artery from the pulmonary artery repair, with a median age of 14.7 months (range, 1.5–59.6 months), including 14 females (46.67%). Surgery was performed with direct coronary reimplantation in 12 patients (40%) and the coronary lengthening technique in 18 (60%). Twelve patients had concomitant mitral annuloplasty. There were two in-hospital deaths (6.67%), no patients required mechanical support, and no late deaths occurred. Follow-up echocardiograms demonstrated significant improvement between the post-operative time point and the last follow-up in ejection fraction (49.43%±19.92% vs 60.21%±8.27%, p < 0.01) and in moderate or more severe mitral regurgitation (19/30 vs 5/28, p < 0.01). The left ventricular end-diastolic dimension index decreased from 101.91 ± 23.07 to 65.06 ± 12.82 (p < 0.01). Conclusions: Surgical repair of anomalous origin of the left coronary artery from the pulmonary artery has good mid-term results with low mortality and reintervention rates. The coronary lengthening technique has good operability and leads to excellent cardiac recovery. The decision to concomitantly correct mitral regurgitation should be flexible and be based on the pathological changes of the mitral valve and the degree of mitral regurgitation.


Heart ◽  
1984 ◽  
Vol 52 (3) ◽  
pp. 272-277 ◽  
Author(s):  
P J Robinson ◽  
I D Sullivan ◽  
V Kumpeng ◽  
R H Anderson ◽  
F J Macartney

2019 ◽  
Vol 40 (41) ◽  
pp. 3409-3417 ◽  
Author(s):  
Mohapradeep Mohan ◽  
Shaween Al-Talabany ◽  
Angela McKinnie ◽  
Ify R Mordi ◽  
Jagdeep S S Singh ◽  
...  

Abstract Aim We tested the hypothesis that metformin may regress left ventricular hypertrophy (LVH) in patients who have coronary artery disease (CAD), with insulin resistance (IR) and/or pre-diabetes. Methods and results We randomly assigned 68 patients (mean age 65 ± 8 years) without diabetes who have CAD with IR and/or pre-diabetes to receive either metformin XL (2000 mg daily dose) or placebo for 12 months. Primary endpoint was change in left ventricular mass indexed to height1.7 (LVMI), assessed by magnetic resonance imaging. In the modified intention-to-treat analysis (n = 63), metformin treatment significantly reduced LVMI compared with placebo group (absolute mean difference −1.37 (95% confidence interval: −2.63 to −0.12, P = 0.033). Metformin also significantly reduced other secondary study endpoints such as: LVM (P = 0.032), body weight (P = 0.001), subcutaneous adipose tissue (P = 0.024), office systolic blood pressure (BP, P = 0.022) and concentration of thiobarbituric acid reactive substances, a biomarker for oxidative stress (P = 0.04). The glycated haemoglobin A1C concentration and fasting IR index did not differ between study groups at the end of the study. Conclusion Metformin treatment significantly reduced LVMI, LVM, office systolic BP, body weight, and oxidative stress. Although LVH is a good surrogate marker of cardiovascular (CV) outcome, conclusive evidence for the cardio-protective role of metformin is required from large CV outcomes trials.


Sign in / Sign up

Export Citation Format

Share Document