metformin treatment
Recently Published Documents


TOTAL DOCUMENTS

700
(FIVE YEARS 270)

H-INDEX

50
(FIVE YEARS 7)

2022 ◽  
Vol 12 ◽  
Author(s):  
Nan Hu ◽  
Qi Zhang ◽  
Hui Wang ◽  
Xuping Yang ◽  
Yan Jiang ◽  
...  

Lately, an increasing number of studies have investigated the relationship between metformin and gut microbiota, suggesting that metformin exerts part of its hypoglycemic effect through the microbes. However, its underlying mechanism remains largely undetermined. In the present study, we investigated the effects of metformin on gut microbiota and metabolome profiles in serum and compared it with insulin treatment in rats with type 2 diabetes mellitus (T2DM). Diabetic rats (DM group) were induced by a combination of streptozotocin and high-fat diet (HFD). After 7 days, DM rats were treated with metformin (MET group) or insulin (INS group) for 3 weeks. The 16S rRNA sequencing of the gut microbiota and non-targeted metabolomics analysis of serum were conducted. A total of 13 bile acids (BAs) in serum were further determined and compared among different groups. The rat model of T2DM was well established with the typical diabetic symptoms, showing significantly increased blood glucose, AUC of OGTT, HOMA-IR, TC, TG, LDL-C and TBA. Metformin or insulin treatment could ameliorate symptoms of diabetes and partly recover the abnormal biochemical indicators. Compared with DM rats, the relative abundances of 13 genera were significantly changed after metformin treatment, while only three genera were changed after insulin treatment. The metformin and insulin treatments also exhibited different serum metabolome profiles in T2DM rats. Moreover, 64 differential metabolites were identified between MET and DM groups, whereas 206 were identified between INS and DM groups. Insulin treatment showed greater influence on amino acids, glycerophospholipids/glycerolipids, and acylcarnitine compared with the metformin treatment, while metformin had an important impact on BAs. Furthermore, metformin could significantly decrease the serum levels of CA, GCA, UDCA, and GUDCA, but increase the level of TLCA in DM rats. Insulin treatment significantly decreased the levels of CA, UDCA, and CDCA. Besides, several metabolites in serum or microbiota were positively or negatively correlated with some bacteria. Collectively, our findings indicated that metformin had a stronger effect on gut microbiota than insulin, while insulin treatment showed greater influence on serum metabolites, which provided novel insights into the therapeutic effects of metformin on diabetes.


2021 ◽  
Author(s):  
Tingting Zhang ◽  
Hongmei Guo ◽  
Letian Wang ◽  
Mengyao Wang ◽  
Hanming Gu

Liver cancer is a leading source of cancer-related mortality in the world. A number of studies have shown the correlation of metformin treatment with a decrease in cancer risk. However, the relevant molecules and mechanisms are not clear during the treatment. In this study, our aim is to identify the significant molecules and signaling pathways in the treatment of metformin in liver cancer cells by analyzing the RNA sequence. The GSE190076 dataset was created by performing the Illumina NovaSeq 6000 (Homo sapiens). The KEGG and GO analyses indicated that DNA synthesis and cell cycle are the main processes during the treatment of metformin. Moreover, we determined numerous genes including RRM2, CDC6, CDC45, UHRF1, ASF1B, ZWINT, PCNA, ASPM, MYC, and TK1 by using the PPI network. Therefore, our study may guide the clinical work on the treatment of liver cancer by using metformin.


Author(s):  
Linda A Jahn ◽  
Lee M Hartline ◽  
Zhenqi Liu ◽  
Eugene J Barrett

Aims: Microvascular insulin resistance is present in metabolic syndrome and may contribute to increased cardiovascular disease risk and the impaired metabolic response to insulin observed. Metformin improves metabolic insulin resistance in humans. Its effects on macro and microvascular insulin resistance has not been defined. Methods: Eleven non-diabetic, metabolic syndrome subjects were studied four times (before and after 12 weeks treatment with placebo or metformin) using a crossover design, with an eight week washout interval between treatments. On each occasion, we measured three indices of large artery function (pulse wave velocity-PWV, radial pulse wave separation analysis (PWSA), brachial artery endothelial function (flow-mediated dilation-FMD) as well as muscle microvascular perfusion (contrast-enhanced ultrasound-CEU) before and 120 min into a 150 min, 1 mU/min/kg euglycemic insulin clamp. RESULTS: Metformin decreased body mass index (BMI), fat weight, and % body fat (P<0.05, each), placebo had no effect. Metformin (not placebo) improved metabolic insulin sensitivity, (clamp glucose infusion rate, P<0.01). PWV, and FMD after insulin were unaffected by metformin treatment. PWSA improved with insulin only after metformin P<0.01). Insulin decreased muscle microvascular blood volume measured by contrast ultrasound both before and after placebo and before metformin (P<0.02 for each) but not after metformin. CONCLUSIONS: Short-term metformin treatment improves both metabolic and muscle microvascular response to insulin. Metformin's effect on microvascular insulin responsiveness may contribute to its beneficial metabolic effects. Metformin did not improve aortic stiffness or brachial artery endothelial function, but enhaced radial pulse wave properties consistent with relaxation of smaller arterioles.


Genes ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 30
Author(s):  
Lalitha Gopalan ◽  
Aswathy Sebastian ◽  
Craig A. Praul ◽  
Istvan Albert ◽  
Ramesh Ramachandran

Ovarian cancer is the most lethal gynecological malignancy in women. Metformin intake is associated with a reduced incidence of ovarian cancer and increased overall survival rate. We determined the effect of metformin on sphere formation, extracellular matrix invasion, and transcriptome profile of ovarian cancer cells (COVCAR) isolated from ascites of chickens that naturally developed ovarian cancer. We found that metformin treatment significantly decreased sphere formation and invasiveness of COVCAR cells. RNA-Seq data analysis revealed 0, 4, 365 differentially expressed genes in cells treated with 0.5, 1, 2 mM metformin, respectively compared to controls. Transcriptomic and ingenuity pathway analysis (IPA) revealed significant downregulation of MMP7, AICDA, GDPD2, APOC3, APOA1 and predicted inhibition of upstream regulators NFKB, STAT3, TP53 that are involved in epithelial–mesenchymal transition, DNA repair, and lipid metabolism. The analysis revealed significant upregulation of RASD2, IHH, CRABP-1 and predicted activation of upstream regulators VEGF and E2F1 that are associated with angiogenesis and cell cycle. Causal network analysis revealed novel pathways suggesting predicted inhibition of ovarian cancer through master regulator ASCL1 and dataset genes DCX, SEMA6B, HEY2, and KCNIP2. In summary, advanced pathway analysis in IPA revealed novel target genes, upstream regulators, and pathways affected by metformin treatment of COVCAR cells.


2021 ◽  
Author(s):  
Ramazan Korkusuz ◽  
Faruk Karandere ◽  
Fatih Okay ◽  
Hakan Koçoğlu

Abstract Introduction: This study evaluates the effect of glycemic control and anti-diabetic agents on the prognosis of diabetic COVID-19 patients. Method: The study includes diabetic patients who were treated and followed up in our hospital because of COVID-19 between 1 June 2020 and 1 January 2021. Patients with any additional comorbidity were excluded from the study. The demographic data of the patients, physical examination findings, laboratory tests, and radiological examination results were obtained retrospectively from the hospital records system.Results: A total of 207 diabetic patients consisted of 125 (60.4%) males and 82 (39.6%) females were included to this study. The mortality rate in cases using metformin was found to be statistically significantly lower than in cases using other drugs (p=0.016; p<0.05). No statistically significant difference was found between the HbA1c and glucose measurements of the cases according to mortality (p>0.05).Discussion: Metformin treatment in diabetic patients diagnosed with COVID-19 should not be stopped, other than in cases with severely hypoxic advanced stage chronic renal failure. Metformin can be recommended as a preventative drug to increase survival in diabetic patients with COVID-19. Nevertheless, there is a need for more evidence and more extensive studies to investigate the protective effects of metformin in COVID-19 patients and in similar viral infections.


2021 ◽  
Vol 22 (24) ◽  
pp. 13660
Author(s):  
Mawj Mandwie ◽  
Jocelyn Karunia ◽  
Aram Niaz ◽  
Kevin A. Keay ◽  
Giuseppe Musumeci ◽  
...  

High-fat diet (HFD)-induced comorbid cognitive and behavioural impairments are thought to be the result of persistent low-grade neuroinflammation. Metformin, a first-line medication for the treatment of type-2 diabetes, seems to ameliorate these comorbidities, but the underlying mechanism(s) are not clear. Pituitary adenylate cyclase-activating peptide (PACAP) and vasoactive intestinal peptide (VIP) are neuroprotective peptides endowed with anti-inflammatory properties. Alterations to the PACAP/VIP system could be pivotal during the development of HFD-induced neuroinflammation. To unveil the pathogenic mechanisms underlying HFD-induced neuroinflammation and assess metformin’s therapeutic activities, (1) we determined if HFD-induced proinflammatory activity was present in vulnerable brain regions associated with the development of comorbid behaviors, (2) investigated if the PACAP/VIP system is altered by HFD, and (3) assessed if metformin rescues such diet-induced neurochemical alterations. C57BL/6J male mice were divided into two groups to receive either standard chow (SC) or HFD for 16 weeks. A further HFD group received metformin (HFD + M) (300 mg/kg BW daily for 5 weeks) via oral gavage. Body weight, fasting glucose, and insulin levels were measured. After 16 weeks, the proinflammatory profile, glial activation markers, and changes within the PI3K/AKT intracellular pathway and the PACAP/VIP system were evaluated by real-time qPCR and/or Western blot in the hypothalamus, hippocampus, prefrontal cortex, and amygdala. Our data showed that HFD causes widespread low-grade neuroinflammation and gliosis, with regional-specific differences across brain regions. HFD also diminished phospho-AKT(Ser473) expression and caused significant disruptions to the PACAP/VIP system. Treatment with metformin attenuated these neuroinflammatory signatures and reversed PI3K/AKT and PACAP/VIP alterations caused by HFD. Altogether, our findings demonstrate that metformin treatment rescues HFD-induced neuroinflammation in vulnerable brain regions, most likely by a mechanism involving the reinstatement of PACAP/VIP system homeostasis. Data also suggests that the PI3K/AKT pathway, at least in part, mediates some of metformin’s beneficial effects.


2021 ◽  
Vol 8 ◽  
Author(s):  
Hannah Hafner ◽  
Molly C. Mulcahy ◽  
Zach Carlson ◽  
Phillip Hartley ◽  
Haijing Sun ◽  
...  

Maternal metabolic disease and diet during pregnancy and lactation have important implications for the programming of offspring metabolic disease. In addition, high-fat diets during pregnancy and lactation can predispose the offspring to non-alcoholic fatty liver disease (NAFLD), a rising health threat in the U.S. We developed a model of maternal high-fat feeding exclusively during the lactation period. We previously showed that offspring from dams, given lactational high-fat diet (HFD), are predisposed to obesity, glucose intolerance, and inflammation. In separate experiments, we also showed that lactational metformin treatment can decrease offspring metabolic risk. The purpose of these studies was to understand the programming implications of lactational HFD on offspring metabolic liver disease risk. Dams were fed a 60% lard-based HFD from the day of delivery through the 21-day lactation period. A subset of dams was also given metformin as a co-treatment. Starting at weaning, the offspring were fed normal fat diet until 3 months of age; at which point, a subset was challenged with an additional HFD stressor. Lactational HFD led male offspring to develop hepatic insulin resistance. The post-weaning HFD challenge led male offspring to progress to NAFLD with more severe outcomes in the lactational HFD-challenged offspring. Co-administration of metformin to lactating dams on HFD partially rescued the offspring liver metabolic defects in males. Lactational HFD or post-weaning HFD had no impact on female offspring who maintained a normal insulin sensitivity and liver phenotype. These findings indicate that HFD, during the lactation period, programs the adult offspring to NAFLD risk in a sexually dimorphic manner. In addition, early life intervention with metformin via maternal exposure may prevent some of the liver programming caused by maternal HFD.


Sign in / Sign up

Export Citation Format

Share Document