Effects of different ventilation on cerebral oxygen saturation and cerebral blood flow before and after modified ultrafiltration in infants during ventricular septal defect repair

2021 ◽  
pp. 1-6
Author(s):  
Boqun Cui ◽  
Chuan Ou-Yang ◽  
Siyuan Xie ◽  
Duomao Lin ◽  
Jun Ma

Abstract Objective: To analyse the changes of different ventilation on regional cerebral oxygen saturation and cerebral blood flow in infants during ventricular septal defect repair. Methods: Ninety-two infants younger than 1 year were enrolled in the study. End-expiratory tidal pressure of carbon dioxide was maintained at 40–45 and 35–39 mmHg in relative low and high ventilation groups. Regional cerebral oxygen saturation and flow velocity of the middle cerebral artery were recorded after anaesthesia (T0), cut pericardium (T1), separation from cardiopulmonary bypass (T2), the end of modified ultrafiltration, (T3) and at the end of operation (T4). Results: The relative low ventilation group exhibited a significantly high regional cerebral oxygen saturation at each time point except for T2 (T0:77 ± 4, T1:76 ± 5, T3:76 ± 8, T4:76 ± 8, respectively, p < 0.001). Flow velocity of the middle cerebral artery in the relative low ventilation group was higher compared to the relative high ventilation group at each time point except for T2 (T0:53 ± 14, T1:54 ± 15, T3:53 ± 17, T4:52 ± 16, respectively, p < 0.001). Between the two groups, T2 showed the lowest middle cerebral artery flow velocity (relative low ventilation: 39 ± 15, relative high ventilation: 39 ± 11, p < 0.001). Conclusion: The infants’ regional cerebral oxygen saturation and middle cerebral artery flow velocity performed better in the range of 40–45 mmHg end-expiratory tidal pressure of carbon dioxide during CHD surgery. Modified ultrafiltration increased cerebral oxygen saturation. It was important to regulate ventilation in order to balance cerebral oxygen in infants.

2020 ◽  
Vol 30 (2) ◽  
pp. 205-212
Author(s):  
Weizhi Zhang ◽  
Siyuan Xie ◽  
Ding Han ◽  
Jiapeng Huang ◽  
Chuan Ou-Yang ◽  
...  

AbstractBackground:Ventilation-associated changes in blood carbon dioxide levels are associated with various physiological changes in infants undergoing surgery. Studies on the effects of mechanical ventilation on cerebral haemodynamics especially for infants with CHD are scarce.Aim:This study was done to compare the changes in regional cerebral oxygen saturation and cerebral blood flow velocity when the end-tidal carbon dioxide partial pressure changed during different minute ventilation settings in infants undergoing ventricular septal defect repair.Methods:A total of 67 patients less than 1 year old with ventricular septal defect were enrolled, and 65 patients (age: 6.7 ± 3.4 months, weight: 6.4 ± 1.5 kg) were studied. After anaesthesia induction and endotracheal intubation, the same mechanical ventilation mode (The fraction of inspired oxygen was 50%, and the inspiratory-to-expiratory ratio was 1:1.5.) was adopted. The end-tidal carbon dioxide partial pressure of 30 mmHg (T1), 35 mmHg (T2), 40 mmHg (T3), or 45 mmHg (T4) were obtained, respectively, by adjusting tidal volume and respiratory rate. Minute ventilation per kilogram was calculated by the formula: minute ventilation per kilogram = tidal volume * respiratory rate/kg. Regional cerebral oxygen saturation was monitored by real-time near-infrared spectroscopy. Cerebral blood flow velocity (systolic flow velocity, end-diastolic flow velocity, and mean flow velocity), pulsatility index, and resistance index were measured intermittently by transcranial Doppler. Systolic pressure, diastolic pressure, stroke volume index, and cardiac index were recorded using the pressure recording analytical method.Results:As the end-tidal carbon dioxide partial pressure increased from 30 to 45 mmHg, regional cerebral oxygen saturation increased significantly from 69 ± 5% to 79 ± 4% (p < 0.001). Cerebral blood flow velocity (systolic flow velocity, end-diastolic flow velocity, and mean flow velocity) increased linearly, while pulsatility index and resistance index decreased linearly from T1 (systolic flow velocity, 84 ± 19 cm/second; end-diastolic flow velocity, 14 ± 4 cm/second; mean flow velocity, 36 ± 10 cm/second; pulsatility index, 2.13 ± 0.59; resistance index, 0.84 ± 0.12) to T4 (systolic flow velocity, 113 ± 22 cm/second; end-diastolic flow velocity, 31 ± 6 cm/second; mean flow velocity, 58 ± 11 cm/second; pulsatility index, 1.44 ± 0.34; resistance index, 0.72 ± 0.07) (p < 0.001). There were significant differences in changes of systolic flow velocity, end-diastolic flow velocity, mean flow velocity, pulsatility index, and resistance index as the end-tidal carbon dioxide partial pressure increased from 30 to 45 mmHg between subgroups of infants ≤6 and infants >6 months, while the changes of regional cerebral oxygen saturation between subgroups were not statistically different. Regional cerebral oxygen saturation and cerebral blood flow velocity (systolic flow velocity, end-diastolic flow velocity, and mean flow velocity) were negatively correlated with minute ventilation per kilogram (r = −0.538, r = −0.379, r = −0.504, r = −0.505, p < 0.001). Pulsatility index and resistance index were positively related to minute ventilation per kilogram (r = 0.464, r = 0.439, p < 0.001). The diastolic pressure was significantly reduced from T1 (41 ± 7 mmHg) to T4 (37 ± 6 mmHg) (p < 0.001). There were no significant differences in systolic pressure, stroke volume index, and cardiac index with the change of end-tidal carbon dioxide partial pressure from T1 to T4 (p = 0.063, p = 0.382, p = 0.165, p > 0.05).Conclusion:A relative low minute ventilation strategy increases regional cerebral oxygen saturation and cerebral blood flow, which may improve cerebral oxygenation and brain perfusion in infants undergoing ventricular septal defect repair.


1995 ◽  
Vol 80 (1) ◽  
pp. 64-70 ◽  
Author(s):  
Andreas Weyland ◽  
Heidrun Stephan ◽  
Frank Grune ◽  
Wolfgang Weyland ◽  
Hans Sonntag

Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Hitoshi Kano ◽  
Tomoyo Saito ◽  
Toshihisa Matsui ◽  
Akio Endo ◽  
Masaki Nagama ◽  
...  

During CPR as it is currently administered, treatments are selected from an algorithm derived by monitoring with ECG alone. One of the reasons for this is that no other devices are presently thought to be effective in helping to make treatment determinations. Monitoring of regional cerebral oxygen saturation with near infrared light is non-invasive and provides information on brain tissue oxygenation and hemodynamics. The results of our study suggest that measurements derived from continuously monitoring regional cerebral oxygen saturation during CPR can be considered an effective method of predicting the ROSC in cardiac arrest patients. Methods: In 95 patients with out-of-hospital cardiac arrest, the tissue oxygenation index (TOI) was continuously monitored (NIRO-200NX, Hamamatsu Photonics). We investigated the following parameters with respect to whether or not ROSC was achieved: TOI value at the contact of patients (initial TOI); TOI value just before ROSC (pre-ROSC TOI); and the maximum TOI during CPR (maximum TOI). Results: All the patients monitored received treatment with shocks or drugs and the initial TOI was 35.3±7.3%. For 74 patients who did not achieve ROSC, the maximum TOI was 41.0±7.4%, whereas for 21 patients who did achieve ROSC, the pre-ROSC TOI was 51.3±3.6% and the maximum TOI was 64.3±11.4%. ROSC was not achieved in the patients with maximum TOI below 45%. Conclusion: The pre-ROSC TOI was significantly higher than the maximum TOI in the patients who did not achieve ROSC which suggests the possibility of predicting ROSC by monitoring the increase in TOI. In cases where the TOI remains low, there is a possibility that ROSC should not be expected. In such cases, it may be desirable to attempt to improve the quality of CPR to increase the TOI before delivering shocks or administering drugs.


Sign in / Sign up

Export Citation Format

Share Document