The Use of ELNES for Microanalysis

1999 ◽  
Vol 5 (S2) ◽  
pp. 664-665
Author(s):  
A.J. Craven ◽  
M. MacKenzie

The performance of many materials systems depends on our ability to control the distribution of atoms on a nanometre or sub-nanometre scale within those systems. This is as true for steels as it is for semiconductors. A key requirement for improving their performance is the ability to determine the distribution of the elements resulting from processing the material under a given set of conditions. Analytical electron microscopy (AEM) provides a range of powerful techniques with which to investigate this distribution. By combining information from different techniques, many of the ambiguities of interpretation of the data from an individual technique can be eliminated. The electron energy loss near edge structure (ELNES) present on an ionisation edge in the electron energy loss spectrum reflects the local structural and chemical environments in which the particular atomic species occurs. Thus it is a useful contribution to the information available. Since a similar local environment frequently results in a similar shape, ELNES is useful as a “fingerprint”.

Author(s):  
L. Reimer

Energy-filtering transmission electron microscopy can be realized by an imaging filter lens in thecolumn of a TEM, a post-column electron energy-loss spectrometer or a dedicated STEM. This offers new possibilities in analytical electron microscopy by combining the operation modes of electron-spectroscopic imaging (ESI), electron-spectroscopic diffraction (ESD) and the record of an electron energy-loss spectrum (EELS).ESI can be used in the zero-loss mode to remove all inelastically scattered electrons. Thicker amorphous and crystalline specimens can be observed without chromatic aberration and with a transmissionof 10−3 up to 80(110) and 150(200) μg/cm2 at 80(120) keV, respectively. This results in a condiserable increase of scattering, phase and Bragg contrast, especially for low Z material because the ratio of inelastic-to-elastic cross section increases as 20/Z with decreasing atomic number. In future energy-filtered high-resolution crystal-lattice images will offer us a better comparison with dynamical simulations. Plasmon loss filtering can be applied for a better separation of phases (e.g. precipitates in a matrix), which differ in their plasmon loss by about 1 eV. Owing to intersections of the energy loss spectra, different parts of a specimen can change their contrast when tuning the selected energy window. Structures containing non carbon atoms will beconsiderably increased in a bright field like contrast relative to the carboneous matrix just below the carbon K edge (structure—sensitive imaging).


1990 ◽  
Vol 1 (5-6) ◽  
pp. 443-454 ◽  
Author(s):  
Danièle Bouchet ◽  
Christian Colliex ◽  
Parmjit Flora ◽  
Ondrej Krivanek ◽  
Claudie Mory ◽  
...  

Author(s):  
Dale E. Newbury ◽  
Richard D. Leapman

The measurement of trace level constituents, arbitrarily defined for this study as concentration levels below 1 atom percent, has always been considered problematic for analytical electron microscopy (AEM) with energy dispersive x-ray spectrometry (EDS) and electron energy loss spectrometry (EELS). In a landmark study of various microanalysis techniques, Wittry evaluated the influence of various instrumental factors (source brightness, detection efficiency, accumulation time) and physical factors (cross section, peak-to-background) upon detection limits. Although the ionization cross section, fluorescence yield, and collection efficiency favor EELS over EDS, the peak-to-background ratio of EELS spectra is much lower than that of EDS spectra, leading Wittry to suggest that the limit of detection should be 0.1 percent for EDS and 1 percent for EELS for practical measurement conditions. Recent developments in parallel detection EELS (PEELS) indicate that a re-evaluation of the situation for trace constituent determination is needed for those elements characterized by "white line" resonance structures at the ionization edge.


1990 ◽  
Vol 5 (2) ◽  
pp. 347-351 ◽  
Author(s):  
M. J. Kim ◽  
R. W. Carpenter

Compositional analysis of thin nanoscale native oxide films formed on {001} silicon wafer surfaces at room temperature was done with an electron energy loss spectrometer coupled to an analytical electron microscope having a field emission source, with better than 4 nm spatial resolution. The electron energy loss spectra show a shift in the threshold onset energy of the Si–L edge of the native oxide from ∼99 eV loss corresponding to pure elemental silicon to ∼105 eV loss, and elemental analysis using the ionization regions of the core loss edges showed the composition to be SiO, within a few percent. Microdiffraction and high resolution electron microscopy (HREM) results showed that the native oxide was completely amorphous, and did not contain detectable nanocrystals. The native oxide can be removed from the Si surface by heating in UHV for a short time at 1000 °C. However, this procedure resulted in the formation of small amounts of a crystalline phase on the Si wafer surface, which was shown to be β-SiC by the same methods.


Author(s):  
D W McComb ◽  
R S Payne ◽  
P L Hansen ◽  
R Brydson

Electron energy-loss near-edge structure (ELNES) is an effective probe of the local geometrical and electronic environment around particular atomic species in the solid state. Energy-loss spectra from several silicate minerals were mostly acquired using a VG HB501 STEM fitted with a parallel detector. Typically a collection angle of ≈8mrad was used, and an energy resolution of ≈0.5eV was achieved.Other authors have indicated that the ELNES of the Si L2,3-edge in α-quartz is dominated by the local environment of the silicon atom i.e. the SiO4 tetrahedron. On this basis, and from results on other minerals, the concept of a coordination fingerprint for certain atoms in minerals has been proposed. The concept is useful in some cases, illustrated here using results from a study of the Al2SiO5 polymorphs (Fig.l). The Al L2,3-edge of kyanite, which contains only 6-coordinate Al, is easily distinguished from andalusite (5- & 6-coordinate Al) and sillimanite (4- & 6-coordinate Al). At the Al K-edge even the latter two samples exhibit differences; with careful processing, the fingerprint for 4-, 5- and 6-coordinate aluminium may be obtained.


2000 ◽  
Vol 6 (S2) ◽  
pp. 188-189
Author(s):  
M. Rühle ◽  
C. Elsässer ◽  
C. Scheu ◽  
W. Sigle

Most materials used in technology are polycrystalline. Therefore, the properties of the internal interfaces often control the properties of the materials (interface-controlled materials). In single phase polycrystalline materials, grain boundaries are the internal interfaces (homophase boundaries) of interest, whereas in composites interfaces between different components (heterophase boundaries) play a crucial role. It is of great importance to investigate the structure, composition and bonding of the different interfaces. The atomistic structure of specific interfaces is obtained by high-resolution transmission electron microscopy studies, whereas analytical electron microscopy (AEM) investigations produce information on the composition of interfaces. AEM studies include energy-dispersive X-ray spectroscopy (EDX) as well as electron energy-loss spectroscopy (EELS). From the energy-loss near-edge structure (ELNES) of ionization edges measured by EELS, information on the local electronic structure at interfaces can be obtained. Information on bonding and its modifications by segregated atoms can be extracted from the ELNES studies.


Sign in / Sign up

Export Citation Format

Share Document