Electron Probe Microanalysis Of Spironolactone Bodies

1999 ◽  
Vol 5 (S2) ◽  
pp. 1288-1289
Author(s):  
J.P. McNeil ◽  
J.E. Carter ◽  
C.W. Boudreaux ◽  
F. McDonald ◽  
J.A. Tucker ◽  
...  

Spironolactone bodies (SB) were first described in 1963 by Janigan. These laminated, whorled structures are seen in cells of the adrenal zona glomerulosa in patients treated with the drug spironolactone. Spironolactone is an aldosterone antagonist. Hyperaldosteronism may result from excess production by the adrenal cortex. By both light microscopy and transmission electron microscopy (TEM), SB have a distinctive, laminated appearance. Kovacs, et al. observed that SB are composed of cellular constituents. To our knowledge, SB have not been analyzed using scanning electron microscopy (SEM) and electron probe microanalysis technology.An adrenal gland with a 1 cm cortical mass was removed from a 39 year old female and received in 10% buffered formalin. Histologic examination of the mass showed a monotonous population of cells recapitulating zona glomerulosa cells. Intracytoplasmic structures compatible with SB were identified. Portions of the adrenal gland were processed for TEM and SEM analysis.

1993 ◽  
Vol 314 ◽  
Author(s):  
S. Arunajatesan ◽  
A. H. Carim ◽  
T. Y. Yiin ◽  
V. K. Varadan

AbstractElectron probe microanalysis (EPMA) and transmission electron microscopy (TEM) have been used to examine the SiC/Al interfaces in microwave joined Si-SiC/Al/Si-SiC and α-SiC/Al/α-SiC. Both the SiC/Al interfaces display intimate contact between the ceramic and metal and are free of porosity. EPMA of the α-SiC/Al/α-SiC joints reveals that no Al has diffused into the bulk α-SiC, unlike the reported diffusion of Al in Si-SiC/Al/Si-SiC. The TEM investigations show that while the Si-SiC/Al/Si-SiC interface is reaction-free, the α-SiC/Al/α-SiC joint contains Si at the interface. The TEM findings are correlated to the strength data available on these joints and the possible reasons for the presence of Si in the absence of Al4C3 in the α-SiC/Al/α-SiC joint are discussed.


Endocrinology ◽  
2007 ◽  
Vol 148 (1) ◽  
pp. 317-323 ◽  
Author(s):  
Craig J. Hanke ◽  
Blythe B. Holmes ◽  
Yafei Xu ◽  
Kasem Nithipatikom ◽  
William B. Campbell

Endothelium-derived steroidogenic factor (EDSF) is an endothelial peptide that stimulates aldosterone release from bovine adrenal zona glomerulosa (ZG) cells. The regulation of aldosterone release by combinations of EDSF and angiotensin II (AII) or EDSF and ACTH was investigated. Endothelial cells (ECs) and EC-conditioned media (ECCM) increased aldosterone release from ZG cells, an activity attributed to EDSF. AII (10−12 to 10−8m) and ACTH (10−12 to 10−9m) also stimulated the release of aldosterone from ZG cells. The stimulation by AII, but not ACTH, was greatly enhanced when ZG cells were coincubated with ECs. AII was metabolized by ECs to peptides identified by mass spectrometry as angiotensin (1-7) and angiotensin IV. There was very little metabolism of AII by ZG cells. Neither of these two AII metabolites altered aldosterone release from ZG cells, so they could not account for the enhanced response with ECs. AII-induced aldosterone release from ZG cells was enhanced by ECCM but not cell-free conditioned medium. This enhanced response was not due to increased EDSF release from ECs by AII. The synergistic effect of EDSF and AII was apparent when AII was added during or after the generation of ECCM and not observed when the AII component of the enhancement was blocked by the AII antagonist, losartan. These studies indicate that EDSF enhances the steroidogenic effect of AII. In the adrenal gland, ECs are in close anatomical relationship with ZG cells and may sensitize ZG cells to the steroidogenic action of AII by releasing EDSF.


2019 ◽  
Vol 21 (93) ◽  
pp. 125-130 ◽  
Author(s):  
M. V. Zakrevska ◽  
A. M. Tybinka

For the purposes of the adrenal gland’s study, 27 four months old male rabbits (Oryctolagus cuniculus) of Termond White breed were selected. Based on electrocardiography and variation pulsometry results, three types of autonomous tonus were determined in animals: sympathicotonia (ST), normotonia (NT) and parasympathicotonia (PS), which formed the basis for the division of animals into three groups. All rabbits were subjected to euthanasia and histological preparations were made from their adrenal glands. Apart from the main adrenal gland, accessory adrenal gland was detected in five purposes animals, including three ST rabbits, one NT rabbit and one PS rabbit. Also, four accessory adrenal glands were revealed in one ST rabbit simultaneously. In fact, these accessory adrenal glands became the main object of the further morphological research. The obtained historical indicators accessory adrenal glands were compared to the ones from various animal groups (CT with NT and CT with PS), as well as to the indicators of the main adrenal gland in each group. Statistical analysis of the received data was performed only in the group of ST animals. Accessory adrenal gland of ST rabbits is represented by two zones: zona glomerulosa and zona fasciculata, the area of which is 52% and 48% respectively. In PS and NT rabbits, the glands are formed by zona glomerulosa only. Investigating the accessory adrenal gland’s cellular component, it was found that NT rabbits have the largest cell area in zona glomerulosa, while PS rabbits have the smallest one. At the same time, the area of nucleus has the largest values in ST animals and the smallest ones in PS animals likewise. Сomparing zona glomerulosa and zona fasciculata in ST rabbits, it was found that cell size differs significantly, while the area of nucleus is almost identical. The nuclear-cytoplasmic ratio in zona glomerulosa cells is the largest for PS rabbits. The smallest ratio values were detected among the NT rabbits. Obviously, ST rabbits occupy an intermediate position. Unlike the main adrenal gland, the cells of accessory adrenal gland are of a smaller size and а denser location of cells in all groups of animals. The conducted studies allow concluding that the typological features of the autonomous tonus affect the morphology of accessory adrenal gland.


1993 ◽  
Vol 99 (1) ◽  
pp. 37-41 ◽  
Author(s):  
Anna-Kaisa Parkkila ◽  
Seppo Parkkila ◽  
Tatu Juvonen ◽  
Hannu Rajaniemi

1974 ◽  
Vol 185 (1081) ◽  
pp. 375-407 ◽  

The densities of latex spheres and biological cells can be reliably determined from their sedimentation rate in an albumin gradient under unit gravitational force. The densities of zona glomerulosa and fasciculata cells of rat adrenals were found to be 1.072 ± 0.004 and 1.040 ± 0.001 respectively. Purified zona glomerulosa cells of rat adrenals can be prepared by gravitational sedimentation of dispersed cells from capsule strippings of the gland, which originally contain 3 to10% zona fasciculata contamination. Electron and phase microscopic examination of the sedimented glomerulosa cells and their steroidogenic response to ACTH and cyclic AMP indicate that they are reasonably free of contamination from zona fasciculata cells. Electron microscopic examination of the purified glomerulosa cells indicates that most of them are reasonably normal in structure. Their basal production of corticosterone is decreased after sedimentation. However, their maximal response of corticosterone output to serotonin and potassium and their response to all potassium concentrations is not significantly altered, indicating normal function for the cells producing steroids. Their maximal responses to ACTH, valine angiotensin II and cyclic AMP are decreased, but, at the doses used, steroidogenesis by the zona fasciculata contamination in the unfractionated preparation would be stimulated by these substances. Purified zona glomerulosa cells have about the same maximal response of corticosterone output (about twofold) to potassium, valine and isoleucine angiotensin II, serotonin and ACTH. The maximal response of the purified zona glomerulosa cells to cyclic AMP is similar to that elicited by valine and isoleucine angiotensin II, potassium, serotonin or ACTH. This indicates that if these stimuli act by increasing cyclic AMP output, then the maximal response of corticosterone output (about twofold) is defined by the limited response of the biosynthetic pathways to cyclic AMP.


Peptides ◽  
2001 ◽  
Vol 22 (11) ◽  
pp. 1909-1912 ◽  
Author(s):  
Piera Rebuffat ◽  
Lucia Gottardo ◽  
Ludwik K Malendowicz ◽  
Giuliano Neri ◽  
Gastone G Nussdorfer

Sign in / Sign up

Export Citation Format

Share Document