scholarly journals Histological characteristics of accessory adrenal glands of rabbits with different types of autonomous tonus

2019 ◽  
Vol 21 (93) ◽  
pp. 125-130 ◽  
Author(s):  
M. V. Zakrevska ◽  
A. M. Tybinka

For the purposes of the adrenal gland’s study, 27 four months old male rabbits (Oryctolagus cuniculus) of Termond White breed were selected. Based on electrocardiography and variation pulsometry results, three types of autonomous tonus were determined in animals: sympathicotonia (ST), normotonia (NT) and parasympathicotonia (PS), which formed the basis for the division of animals into three groups. All rabbits were subjected to euthanasia and histological preparations were made from their adrenal glands. Apart from the main adrenal gland, accessory adrenal gland was detected in five purposes animals, including three ST rabbits, one NT rabbit and one PS rabbit. Also, four accessory adrenal glands were revealed in one ST rabbit simultaneously. In fact, these accessory adrenal glands became the main object of the further morphological research. The obtained historical indicators accessory adrenal glands were compared to the ones from various animal groups (CT with NT and CT with PS), as well as to the indicators of the main adrenal gland in each group. Statistical analysis of the received data was performed only in the group of ST animals. Accessory adrenal gland of ST rabbits is represented by two zones: zona glomerulosa and zona fasciculata, the area of which is 52% and 48% respectively. In PS and NT rabbits, the glands are formed by zona glomerulosa only. Investigating the accessory adrenal gland’s cellular component, it was found that NT rabbits have the largest cell area in zona glomerulosa, while PS rabbits have the smallest one. At the same time, the area of nucleus has the largest values in ST animals and the smallest ones in PS animals likewise. Сomparing zona glomerulosa and zona fasciculata in ST rabbits, it was found that cell size differs significantly, while the area of nucleus is almost identical. The nuclear-cytoplasmic ratio in zona glomerulosa cells is the largest for PS rabbits. The smallest ratio values were detected among the NT rabbits. Obviously, ST rabbits occupy an intermediate position. Unlike the main adrenal gland, the cells of accessory adrenal gland are of a smaller size and а denser location of cells in all groups of animals. The conducted studies allow concluding that the typological features of the autonomous tonus affect the morphology of accessory adrenal gland.

1974 ◽  
Vol 185 (1081) ◽  
pp. 375-407 ◽  

The densities of latex spheres and biological cells can be reliably determined from their sedimentation rate in an albumin gradient under unit gravitational force. The densities of zona glomerulosa and fasciculata cells of rat adrenals were found to be 1.072 ± 0.004 and 1.040 ± 0.001 respectively. Purified zona glomerulosa cells of rat adrenals can be prepared by gravitational sedimentation of dispersed cells from capsule strippings of the gland, which originally contain 3 to10% zona fasciculata contamination. Electron and phase microscopic examination of the sedimented glomerulosa cells and their steroidogenic response to ACTH and cyclic AMP indicate that they are reasonably free of contamination from zona fasciculata cells. Electron microscopic examination of the purified glomerulosa cells indicates that most of them are reasonably normal in structure. Their basal production of corticosterone is decreased after sedimentation. However, their maximal response of corticosterone output to serotonin and potassium and their response to all potassium concentrations is not significantly altered, indicating normal function for the cells producing steroids. Their maximal responses to ACTH, valine angiotensin II and cyclic AMP are decreased, but, at the doses used, steroidogenesis by the zona fasciculata contamination in the unfractionated preparation would be stimulated by these substances. Purified zona glomerulosa cells have about the same maximal response of corticosterone output (about twofold) to potassium, valine and isoleucine angiotensin II, serotonin and ACTH. The maximal response of the purified zona glomerulosa cells to cyclic AMP is similar to that elicited by valine and isoleucine angiotensin II, potassium, serotonin or ACTH. This indicates that if these stimuli act by increasing cyclic AMP output, then the maximal response of corticosterone output (about twofold) is defined by the limited response of the biosynthetic pathways to cyclic AMP.


1987 ◽  
Vol 114 (1) ◽  
pp. 47-54 ◽  
Author(s):  
Anne M. Riondel ◽  
Piera Rebuffat ◽  
Giuseppina Mazzochi ◽  
Gastone G. Nussdorfer ◽  
Rolf C. Gaillard ◽  
...  

Abstract. To test the hypothesis that the trophic action of angiotensin II on the adrenal zona glomerulosa may allow a sustained stimulation of aldosterone by ACTH by preventing the morphological changes of the zona glomerulosa cells into zona fasciculata-like elements we investigated the effects in rats of a 6-day treatment with ACTH (100 μg/kg/day) alone or combined with angiotensin II (300 ng/kg/day) on corticosterone and aldosterone production and adrenal morphology. The responsiveness of both steroids to an acute ACTH dose was also studied on the last day of long-term treatment. Morphologic data showed that prolonged ACTH treatment stimulated the growth of zona glomerulosa cells, though it transformed the tubulo-lamellar cristae of mitochondria into a homogeneous population of vesicles. Angiotensin II furthered the trophic effects of ACTH but prevented the mitochondrial transformation. Despite its ability to conserve the well differentiated aspect of the zona glomerulosa cells, the administration of angiotensin II was unable to prevent the fall in the secretion of aldosterone caused by chronic ACTH treatment and its subsequent unresponsiveness to ACTH stimulation.


1997 ◽  
Vol 155 (3) ◽  
pp. 523-530 ◽  
Author(s):  
P Vaillancourt ◽  
S Omer ◽  
R Palfree ◽  
DR Varma ◽  
S Mulay

The main objective of this study was to find out if the reported changes in the aldosterone-suppressant activity of atrial natriuretic peptide (ANP) during different hormonal states in rats are due to a modulation of ANP receptors. In zona glomerulosa cells, ribonuclease protection assay detected mRNAs for guanylate cyclase (GC)-coupled ANP GC-A and GC-B receptors, and for ANP C receptors, which are not coupled to GC. Western analysis using polyclonal anti-GC-A and anti-GC-B receptor antibodies revealed the presence of GC-A but not GC-B receptor proteins in zona glomerulosa cells. Pregnancy (days 7, 16 and 21), oestradiol-17 beta and progesterone decreased mRNAs for all the three ANP receptors in zona glomerulosa cells. Pregnancy decreased GC-A receptor proteins in zona glomerulosa cells, but these recovered to virgin values on day 2 postpartum. ANP receptor mRNAs in zona glomerulosa cells increased by postpartum day 2, but did not reach the values found in virgin rats. Zona fasciculata mainly contained GC-A receptor mRNA. It is concluded that ANP receptors in rat adrenal zona glomerulosa are modulated by pregnancy, oestrogen and progesterone; a decrease in ANP GC-A receptors during pregnancy might explain the accompanying decrease in the aldosterone-suppressant effects of ANP.


1994 ◽  
Vol 12 (2) ◽  
pp. 195-202 ◽  
Author(s):  
B J Whitehouse ◽  
D R E Abayasekara

ABSTRACT The role played by cyclic AMP (cAMP)-dependent protein kinases (PKAs) in rat adrenal steroidogenesis has been investigated using cAMP analogues which show partial selectivity for the type I and type II PKA isoenzymes. These were aminohexylamino-cAMP (AHA-cAMP; selective for site 1 on type I PKA), N6-benzoyl-cAMP (BZ-cAMP; selective for site 2 on PKA types I and II) and 8-thiomethyl-cAMP (TM-cAMP; selective for site 1 on type II PKA). Positive cooperativity exists between the two nucleotide-binding sites, thus the presence of type I PKA was inferred when synergistic increases in corticosteroid production were obtained with AHA-cAMP plus BZ-cAMP and that of type II PKA when synergistic increases were obtained with TM-cAMP plus BZ-cAMP. The effects of AHA-cAMP, TM-cAMP and BZ-cAMP (10–100 μmol/l) on aldosterone production by glomerulosa cell preparations and corticosterone production by fasciculata/reticularis cell preparations were compared. Dose-related stimulation of steroid production was obtained with each cAMP analogue in both types of cell preparation. Experiments were performed using the cAMP analogues in combination at doses which gave minimal stimulation individually. Cells were incubated with AHA-cAMP (66 and 100 μmol/l) or TM-cAMP (15, 30 and 45 μmol/l) in the presence and absence of 15μmol BZ-cAMP/l. Synergistic responses were obtained with both analogue pairs in both cell types. The synergism ratio in fasciculata/reticularis cell preparations for the type I PKA selective pair of analogues (100 μmol AHA-cAMP/l plus 15μmol BZ-cAMP/l) was significantly higher (P<0·01) than that for the type II selective pair (45μmol TM-cAMP/l plus 15μmol BZ-cAMP/l; 7·9±1·2 (mean±s.e.m.) and 2·6±0·3 respectively). In zona glomerulosa preparations the ratio was higher (P<0·05) for the type II selective pair (1·6±0·1 for AHA-cAMP plus BZ-cAMP and 2·8±0·4 for TM-cAMP plus BZ-cAMP). The effects of 100μmol AHA-cAMP/l and 45μmol TM-cAMP/l on the response to ACTH (1 pmol/l–10 nmol/l) were examined. Synergistic responses were obtained in fasciculata/reticularis cells with both analogues in combination with low concentrations of ACTH (10 and 100 pmol/l). In zona glomerulosa cells only the addition of TM-cAMP (45 μmol/l) in combination with 10 pmol ACTH/1 gave rise to synergistic increases in aldosterone production, which suggests that there may be some compartmentalization of the cAMP-dependent pathway in these cells. The results indicate that both isoenzymes of PKA are present in rat adrenocortical cells and can play a part in the control of steroidogenesis. Type I PKA activity appears dominant in the control of zona fasciculata/reticularis cell function whereas modulation of type II PKA activity plays a more significant role in the responses of zona glomerulosa cells.


1995 ◽  
Vol 145 (2) ◽  
pp. 283-289 ◽  
Author(s):  
J P Hinson ◽  
L A Cameron ◽  
S Kapas

Abstract Neuropeptide Y (NPY) has been identified in nerves supplying the adrenal cortex of several mammalian species, although its function in this tissue is unknown. The present studies, employing adrenocortical cells prepared by collagenase digestion, have shown that NPY, in the absence of other stimulants, has no effect on steroid secretion by the rat adrenal over a range of peptide concentrations (10−11 to 10 −6 mol/l). However, in the presence of physiological concentrations of ACTH, which are submaximal for the stimulation of aldosterone secretion, NPY (10−6 mol/l) significantly enhanced the secretion rate of aldosterone by rat zona glomerulosa cells in response to ACTH. This effect was specific to the rat zona glomerulosa as NPY had no effect on the response to ACTH in rat zona fasciculata cells. The effect of NPY appears to be biphasic, however, as NPY significantly attenuated the steroidogenic response to supramaximal ACTH concentrations: in rat zona glomerulosa cells the aldosterone response to 10 −8 mol ACTH/l was significantly inhibited by NPY. The effect of NPY on the ACTH response appeared to be mediated by changes in the cAMP response. NPY had no effect on the steroidogenic response to potassium ions (K+), but enhanced the response to angiotensin II. NPY (10 −6 mol/l) significantly stimulated inositol 1,4,5-trisphosphate (InsP3) production although this concentration of peptide had no effect on steroid secretion. The effects of NPY on InsP3 production were additive with those of angiotensin II. These results suggest that the role of NPY in the adrenal cortex may be to regulate the sensitivity of the zona glomerulosa to peptide stimulation. Journal of Endocrinology (1995) 145, 283–289


1993 ◽  
Vol 136 (1) ◽  
pp. 75-83 ◽  
Author(s):  
B. J. Whitehouse ◽  
S. J. Purdy ◽  
D. R. E. Abayasekara

ABSTRACT It is possible that some of the effects of sodium pentobarbitone on the hypothalamo-pituitary-adrenal axis in the intact animal may be attributable to direct actions on the adrenal cortex. The effects of the barbiturate on steroid production by rat adrenal preparations in vitro have therefore been examined. In zona glomerulosa cells, pentobarbitone inhibited basal steroid production in a dose-related fashion. For aldosterone and corticosterone, the doses required for 50% inhibition of production (IC50) were 1·2 mmol pentobarbitone/l and 3·7 mmol/l respectively. Steroidogenesis was inhibited at lower levels of pentobarbitone in the presence of 1 nmol ACTH/l (IC50 = 0·5 mmol pentobarbitone/l for aldosterone and 2·2 mmol/l for corticosterone). In zona fasciculata/reticularis cells, production of corticosterone was similarly reduced with an IC50 of 2·8 mmol pentobarbitone/l for basal production and 1·3 mmol/l for ACTH-stimulated production. The dose-related increases in corticosterone production produced by ACTH (0·1–1000 pmol/l) or dibutyryl cyclic AMP (0·1–1·0 mmol/l) were also eliminated in the presence of 2 mmol pentobarbitone/l. The effects of pentobarbitone (1–4 mmol/l) on the production of pregnenolone and deoxycorticosterone (DOC) were also studied. In zona fasciculata/reticularis cells, the responses of both pregnenolone and DOC were bell-shaped with increases at 1 mmol pentobarbitone/l, which fell back to control levels at 4 mmol pentobarbitone/l. Stimulation of DOC, accompanied by decreases in aldosterone and corticosterone production, was also seen in zona glomerulosa cells at 1 mmol pentobarbitone/l. The effect of 1 mmol pentobarbitone/l on the conversion of 22(R)-hydroxycholesterol (5-cholestene-3β,22(R)-diol), pregnenolone, progesterone and DOC to corticosterone and aldosterone by zona glomerulosa preparations was studied. There was a comparable reduction in the conversion of these precursors (2 μmol/l) to aldosterone with yields decreased to 20–30% of those found in the absence of pentobarbitone. The dose required for 50% reduction of the conversion of progesterone (2 μmol/l) to aldosterone was 0·55 mmol pentobarbitone/l and for corticosterone the dose was 1·75 mmol pentobarbitone/l. The results obtained show that pentobarbitone is an effective inhibitor of corticosteroid biosynthesis in rat adrenal cells, and suggest that its effects are brought about by inhibition of cytochrome P450-mediated hydroxylations. Journal of Endocrinology (1993) 136, 75–83


1976 ◽  
Vol 25 (9) ◽  
pp. 1031-1034 ◽  
Author(s):  
Steve Gurchinoff ◽  
Philip A. Khairallah ◽  
Marie Aude Devynck ◽  
Philippe Meyer

1989 ◽  
Vol 256 (4) ◽  
pp. E475-E482
Author(s):  
J. Muller ◽  
M. Lauber ◽  
C. Schmid

Rat adrenal zona glomerulosa cells lost their ability to produce aldosterone from either endogenous precursors or added deoxycorticosterone within 2 days of primary monolayer culture in a medium with a potassium concentration of 6.3 mmol/l. The lost corticosterone methyl oxidase I and II activities were totally regenerated when the ambient potassium concentrations was raised to 31 mmol/l. The conversions of deoxycorticosterone to 18-hydroxycorticosterone and aldosterone were completely restored by culture in a high-potassium medium also in zona glomerulosa cells of rats in which aldosterone biosynthesis had been suppressed by potassium restriction and sodium loading. However, these conversions were not induced in zona fasciculata-reticularis cells. The induction of aldosterone biosynthesis was associated with the appearance of a mitochondrial 49,000 protein cross-reacting with an antibody raised against bovine adrenal cytochrome P-450(11) beta. Thus primary cultures of zona glomerulosa cells are promising models for studying in vitro the molecular mechanisms of long-term adaptation of aldosterone biosynthesis to sodium and potassium intake.


Sign in / Sign up

Export Citation Format

Share Document