Isotopic Measurements of Inorganic Material by Time-Of-Flight SIMS

1998 ◽  
Vol 4 (S2) ◽  
pp. 412-413
Author(s):  
A. J. Fahey

Isotopic measurements via Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) have generally not been considered as practical because of the low duty cycle at which ToF-SIMS instruments operate and the corresponding low data rate. The recent discovery of pre-solar material in meteorites has shown that large variations in isotopic ratios (several orders of magnitude for some elements) exist in small (∼1 μm), refractory meteoritic grains. These grains are ideal candidates for ToF-SIMS, which consumes little sample material, compared to dynamic, magneticsector SIMS. ToF-SIMS also allows for parallel detection of all species present in the sample; thus, multiple isotopic systems can be studied in one measurement. As a prerequisite to studying the isotopic composition of meteoritic materials, preliminary determinations of ratios for a number of elements have been made on materials of known isotopic composition. This allows us to investigate problems that may be unique to ToF-SIMS for the measurement of isotopic ratios.

Author(s):  
Bruno Schueler ◽  
Robert W. Odom

Time-of-flight secondary ion mass spectrometry (TOF-SIMS) provides unique capabilities for elemental and molecular compositional analysis of a wide variety of surfaces. This relatively new technique is finding increasing applications in analyses concerned with determining the chemical composition of various polymer surfaces, identifying the composition of organic and inorganic residues on surfaces and the localization of molecular or structurally significant secondary ions signals from biological tissues. TOF-SIMS analyses are typically performed under low primary ion dose (static SIMS) conditions and hence the secondary ions formed often contain significant structural information.This paper will present an overview of current TOF-SIMS instrumentation with particular emphasis on the stigmatic imaging ion microscope developed in the authors’ laboratory. This discussion will be followed by a presentation of several useful applications of the technique for the characterization of polymer surfaces and biological tissues specimens. Particular attention in these applications will focus on how the analytical problem impacts the performance requirements of the mass spectrometer and vice-versa.


2020 ◽  
Author(s):  
Feifei Jia ◽  
Jie Wang ◽  
Yanyan Zhang ◽  
Qun Luo ◽  
Luyu Qi ◽  
...  

<p></p><p><i>In situ</i> visualization of proteins of interest at single cell level is attractive in cell biology, molecular biology and biomedicine, which usually involves photon, electron or X-ray based imaging methods. Herein, we report an optics-free strategy that images a specific protein in single cells by time of flight-secondary ion mass spectrometry (ToF-SIMS) following genetic incorporation of fluorine-containing unnatural amino acids as a chemical tag into the protein via genetic code expansion technique. The method was developed and validated by imaging GFP in E. coli and human HeLa cancer cells, and then utilized to visualize the distribution of chemotaxis protein CheA in E. coli cells and the interaction between high mobility group box 1 protein and cisplatin damaged DNA in HeLa cells. The present work highlights the power of ToF-SIMS imaging combined with genetically encoded chemical tags for <i>in situ </i>visualization of proteins of interest as well as the interactions between proteins and drugs or drug damaged DNA in single cells.</p><p></p>


1996 ◽  
Vol 122 (1-2) ◽  
pp. 1-15 ◽  
Author(s):  
Keyang Xu ◽  
Andrew Proctor ◽  
David M. Hercules

Sign in / Sign up

Export Citation Format

Share Document