elemental characterization
Recently Published Documents


TOTAL DOCUMENTS

214
(FIVE YEARS 52)

H-INDEX

28
(FIVE YEARS 3)

2021 ◽  
Vol 8 ◽  
Author(s):  
Musa Abubakar Tadda ◽  
Mostafa Gouda ◽  
Xiaochang Lin ◽  
Abubakar Shitu ◽  
Hamza Sulayman Abdullahi ◽  
...  

Poly (butylene succinate) (PBS) is one of the most common biodegradable plastic polymers that has recently been used in the green environmental field. Enhancement of physicochemical characteristics of these polymers by using plant-based materials like Baobab (Adansonia digitata) will improve its industrial application. This study evaluated Baobab (Adansonia digitata) powder (BP) and PBS composites under various ratios (PBS/BP: 90/10, 80/20, 70/30, 60/40, and 50/50 wt%) for their thermo-mechanical and other physicochemical properties for the industrial application. The nanoscale morphological and elemental characterization were also measured by scanning electron microscope-dispersive X-ray spectroscopy (SEM-EDS). The results revealed that PBS/BP blends of 90/10 and 50/50 showed a significantly reduced melting temperature (Tm) up to 94°C (p < 0.05) compared to PBS (114°C). Also, the dynamic viscosity, storage modulus, and loss modulus showed a significant decrease with increasing the ratio of BP in PBS/BP composite, which confirmed faster degradation than the pure PBS. In conclusion, the novel PBS/BP biomaterial is recommended for use as a carbon source for denitrification processes, as an eco-friendly faster degradable natural filler-based polymer. Besides, they could be use in food packaging and biomedical industries.


2021 ◽  
Author(s):  
Adrian Simon Losko ◽  
Sven Vogel

Abstract Tools for three-dimensional elemental characterization are available on length scales ranging from individual atoms, using electrons as a probe, to micrometers with X-rays. However, for larger volumes up to millimeters or centimeters, quantitative measurements of elemental or isotope densities were hitherto only possible on the surface. Here, a novel quantitative elemental characterization method based on energy-resolved neutron imaging, utilizing the known neutron absorption cross sections with their ‘finger-print’ absorption resonance signatures, is demonstrated. Enabled by a pixilated time-of-flight neutron transmission detector installed at an intense short-pulsed spallation neutron source, for this demonstration 3.25 million state-of-the-art nuclear physics neutron transmission analyses were conducted to derive isotopic densities for five isotopes in 3D in a volume of 0.25 cm3. The tomographic reconstruction of the isotope densities provides elemental maps similar to X-ray microprobe maps for any cross-section in the probed volume. The bulk isotopic density of a U-20Pu-10Zr-3Np-2Am nuclear transmutation fuel sample was measured, agrees well with mass-spectrometry and is evidence of the accuracy of the method.


Author(s):  
Rafaela Debastiani ◽  
Carla Eliete Iochims dos Santos ◽  
Johnny Ferraz Dias

2021 ◽  
Vol 14 (18) ◽  
Author(s):  
Neetu Mohan ◽  
Sugumar Vasudevan ◽  
Paramasivam Chellamuthu Ranganathan ◽  
Anandhan Narayanasamy

2021 ◽  
pp. 1950019
Author(s):  
Katsumi Saitoh ◽  
Koichiro Sera ◽  
Koyomi Nakazawa ◽  
Osamu Nagafuchi

To comprehend the elemental characterization of the particles emitted from an aircraft, we performed element analysis using in-vacuum PIXE for particles emitted from the carbon disc brakes and tires in addition to the exhaust particles produced by the jet engine. As for the elemental characteristics of aircraft source particulate matter, engine reversers mainly consisted of Al, Si, Ca, and Fe, and also included Ti, Cr, Mo, and W. The disc brakes mainly contained Si, Ca, and Fe, and also contained S, K, Ti, Cr, Ni, and Cu. In tires, Na, Al, Si, Ca, Fe, and Zn were mainly found, and S, K, and Ti were also detected. Thus, there was a difference in the trace elements found in the aircraft source particulate matter. These results aid in determining the component features of particles emitted from an aircraft.


Sign in / Sign up

Export Citation Format

Share Document