scholarly journals Spatial Mapping of Electrostatics and Dynamics in Quantum Materials

2021 ◽  
Vol 27 (S1) ◽  
pp. 1436-1438
Author(s):  
Akshay Murthy ◽  
Stephanie Ribet ◽  
Roberto dos Reis ◽  
Vinayak Dravid
2003 ◽  
Author(s):  
C. G. L. Cao ◽  
S. L. Waxberg ◽  
E. Smith
Keyword(s):  

2016 ◽  
Vol 15 (4) ◽  
pp. 783-790 ◽  
Author(s):  
Vinod Kumar Garg ◽  
Manbir Singh ◽  
Yogendra Prakash Gautam ◽  
Avinash Kumar

Data Series ◽  
10.3133/ds524 ◽  
2010 ◽  
Author(s):  
Michael S. O'Donnell ◽  
Tammy S. Fancher

2021 ◽  
pp. 2004762
Author(s):  
Kentaro Yumigeta ◽  
Ying Qin ◽  
Han Li ◽  
Mark Blei ◽  
Yashika Attarde ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Pankaj Rajak ◽  
Aravind Krishnamoorthy ◽  
Ankit Mishra ◽  
Rajiv Kalia ◽  
Aiichiro Nakano ◽  
...  

AbstractPredictive materials synthesis is the primary bottleneck in realizing functional and quantum materials. Strategies for synthesis of promising materials are currently identified by time-consuming trial and error and there are no known predictive schemes to design synthesis parameters for materials. We use offline reinforcement learning (RL) to predict optimal synthesis schedules, i.e., a time-sequence of reaction conditions like temperatures and concentrations, for the synthesis of semiconducting monolayer MoS2 using chemical vapor deposition. The RL agent, trained on 10,000 computational synthesis simulations, learned threshold temperatures and chemical potentials for onset of chemical reactions and predicted previously unknown synthesis schedules that produce well-sulfidized crystalline, phase-pure MoS2. The model can be extended to multi-task objectives such as predicting profiles for synthesis of complex structures including multi-phase heterostructures and can predict long-time behavior of reacting systems, far beyond the domain of molecular dynamics simulations, making these predictions directly relevant to experimental synthesis.


Sign in / Sign up

Export Citation Format

Share Document