scholarly journals Robust H∞ stabilisation with definite attenuance of an uncertain impulsive switche system

2005 ◽  
Vol 46 (4) ◽  
pp. 471-484 ◽  
Author(s):  
Honglei Xu ◽  
Xinzhi Liu ◽  
Kok Lay Teo

AbstractIn this paper, we study the problem of robust H∞ stabilisation with definite attenuance for a class of impulsive switched systems with time-varying uncertainty. A norm-bounded uncertainty is assumed to appear in all the matrices of the state model. An LMI-based method for robust· H∞ stabilisation with definite attenuance via a state feedback control law is developed. A simulation example is presented to demonstrate the effectiveness of the proposed method.

2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
P. Bumroongsri

An offline model predictive control (MPC) algorithm for linear parameter varying (LPV) systems is presented. The main contribution is to develop an offline MPC algorithm for LPV systems that can deal with both time-varying scheduling parameter and persistent disturbance. The norm-bounding technique is used to derive an offline MPC algorithm based on the parameter-dependent state feedback control law and the parameter-dependent Lyapunov functions. The online computational time is reduced by solving offline the linear matrix inequality (LMI) optimization problems to find the sequences of explicit state feedback control laws. At each sampling instant, a parameter-dependent state feedback control law is computed by linear interpolation between the precomputed state feedback control laws. The algorithm is illustrated with two examples. The results show that robust stability can be ensured in the presence of both time-varying scheduling parameter and persistent disturbance.


2015 ◽  
Vol 82 (1-2) ◽  
pp. 349-355 ◽  
Author(s):  
Omar Naifar ◽  
Abdellatif Ben Makhlouf ◽  
Mohamed Ali Hammami ◽  
Abderrazak Ouali

Author(s):  
Jianqin Wang ◽  
Zaojian Zou ◽  
Tao Wang

The paper studies the path following of a ship sailing in restricted waters based on an output feedback control, which consists of a state feedback control law and an extended updated-gain high-gain observer. According to the separation principle, the state feedback control and the extended updated-gain high-gain observer are designed separately. The state feedback control law is designed based on a robust guaranteed cost control method assuming that system states are measurable. Sufficient conditions are given for the control based on a linear uncertain system. The extended updated-gain high-gain observer, whose gains are updated according to the nonlinear functions of available evaluation errors, is used to reconstruct system states. Then the output feedback control is obtained by replacing states value in the state feedback control law with its estimation yielded by the state observer. Numerical simulations confirm the effectiveness of the proposed control method for the path following of a ship sailing in restricted waters.


Sign in / Sign up

Export Citation Format

Share Document