scholarly journals QUASI-MONTE CARLO METHODS FOR HIGH-DIMENSIONAL INTEGRATION: THE STANDARD (WEIGHTED HILBERT SPACE) SETTING AND BEYOND

2011 ◽  
Vol 53 (1) ◽  
pp. 1-37 ◽  
Author(s):  
F. Y. KUO ◽  
CH. SCHWAB ◽  
I. H. SLOAN

AbstractThis paper is a contemporary review of quasi-Monte Carlo (QMC) methods, that is, equal-weight rules for the approximate evaluation of high-dimensional integrals over the unit cube [0,1]s. It first introduces the by-now standard setting of weighted Hilbert spaces of functions with square-integrable mixed first derivatives, and then indicates alternative settings, such as non-Hilbert spaces, that can sometimes be more suitable. Original contributions include the extension of the fast component-by-component (CBC) construction of lattice rules that achieve the optimal convergence order (a rate of almost 1/N, where N is the number of points, independently of dimension) to so-called “product and order dependent” (POD) weights, as seen in some recent applications. Although the paper has a strong focus on lattice rules, the function space settings are applicable to all QMC methods. Furthermore, the error analysis and construction of lattice rules can be adapted to polynomial lattice rules from the family of digital nets.

2019 ◽  
Vol 60 ◽  
pp. C247-C260
Author(s):  
Y. Kazashi ◽  
F. Y. Kuo ◽  
I. H. Sloan

We seek shifted lattice rules that are good for high dimensional integration over the unit cube in the setting of an unanchored weighted Sobolev space of functions with square-integrable mixed first derivatives. Many existing studies rely on random shifting of the lattice, whereas here we work with lattice rules with a deterministic shift. Specifically, we consider 'half-shifted' rules in which each component of the shift is an odd multiple of \(1/(2N)\) where \(N\) is the number of points in the lattice. By applying the principle that there is always at least one choice as good as the average, we show that for a given generating vector there exists a half-shifted rule whose squared worst-case error differs from the shift-averaged squared worst-case error by a term of only order \({1/N^2}\). We carry out numerical experiments where the generating vector is chosen component-by-component (CBC), as for randomly shifted lattices, and where the shift is chosen by a new `CBC for shift' algorithm. The numerical results are encouraging. References J. Dick, F. Y. Kuo, and I. H. Sloan. High-dimensional integration: The quasi-Monte Carlo way. Acta Numer., 22:133–288, 2013. doi:10.1017/S0962492913000044. J. Dick, D. Nuyens, and F. Pillichshammer. Lattice rules for nonperiodic smooth integrands. Numer. Math., 126(2):259–291, 2014. doi:10.1007/s00211-013-0566-0. T. Goda, K. Suzuki, and T. Yoshiki. Lattice rules in non-periodic subspaces of sobolev spaces. Numer. Math., 141(2):399–427, 2019. doi:10.1007/s00211-018-1003-1. F. Y. Kuo. Lattice rule generating vectors. URL http://web.maths.unsw.edu.au/ fkuo/lattice/index.html. D. Nuyens and R. Cools. Fast algorithms for component-by-component construction of rank-1 lattice rules in shift-invariant reproducing kernel Hilbert spaces. Math. Comput., 75:903–920, 2006. doi:10.1090/S0025-5718-06-01785-6. I. H. Sloan and S. Joe. Lattice methods for multiple integration. Oxford Science Publications. Clarendon Press and Oxford University Press, 1994. URL https://global.oup.com/academic/product/lattice-methods-for-multiple-integration-9780198534723. I. H. Sloan and H. Wozniakowski. When are quasi-Monte Carlo algorithms efficient for high dimensional integrals? J. Complex., 14(1):1–33, 1998. doi:10.1006/jcom.1997.0463. I. H. Sloan, F. Y. Kuo, and S. Joe. On the step-by-step construction of quasi-Monte Carlo integration rules that achieve strong tractability error bounds in weighted Sobolev spaces. Math. Comput., 71:1609–1641, 2002. doi:10.1090/S0025-5718-02-01420-5.


Acta Numerica ◽  
2013 ◽  
Vol 22 ◽  
pp. 133-288 ◽  
Author(s):  
Josef Dick ◽  
Frances Y. Kuo ◽  
Ian H. Sloan

This paper is a contemporary review of QMC (‘quasi-Monte Carlo’) methods, that is, equal-weight rules for the approximate evaluation of high-dimensional integrals over the unit cube [0,1]s, where s may be large, or even infinite. After a general introduction, the paper surveys recent developments in lattice methods, digital nets, and related themes. Among those recent developments are methods of construction of both lattices and digital nets, to yield QMC rules that have a prescribed rate of convergence for sufficiently smooth functions, and ideally also guaranteed slow growth (or no growth) of the worst-case error as s increases. A crucial role is played by parameters called ‘weights’, since a careful use of the weight parameters is needed to ensure that the worst-case errors in an appropriately weighted function space are bounded, or grow only slowly, as the dimension s increases. Important tools for the analysis are weighted function spaces, reproducing kernel Hilbert spaces, and discrepancy, all of which are discussed with an appropriate level of detail.


2003 ◽  
Vol 06 (04) ◽  
pp. 327-353 ◽  
Author(s):  
LARS O. DAHL

This is part two of a work on adaptive integration methods aimed at multidimensional option pricing problems in finance. It presents simulation results of an adaptive method developed in the companion article [3] for the evaluation of multidimensional integrals over the unit cube. The article focuses on a rather general test problem constructed to give insights in the success of the adaptive method for option pricing problems. We establish a connection between the decline rate of the ordered eigenvalues of the pricing problem and the efficiency of the adaptive method relative to the non-adaptive. This gives criteria for when the adaptive method can be expected to outperform the non-adaptive for other pricing problems. In addition to evaluating the method for different problem parameters, we present simulation results after adding various techniques to enhance the adaptive method itself. This includes using variance reduction techniques for each sub-problem resulting from the partitioning of the integration domain. All simulations are done with both pseudo-random numbers and quasi-random numbers (low discrepancy sequences), resulting in Monte Carlo (MC) and quasi-Monte Carlo (QMC) estimators and the ability to compare them in the given setting. The results show that the adaptive method can give performance gains in the order of magnitudes for many configurations, but it should not be used incautious, since this ability depends heavily on the problem at hand.


Sign in / Sign up

Export Citation Format

Share Document