scholarly journals Attainable bounds for expectations

Author(s):  
E. Seneta ◽  
N. C. Weber

AbstractA simple technique for obtaining bounds in terms of means and variances for the expectations of certain functions of random variables in a given class is examined. The bounds given are sharp in the sense that they are attainable by at least one random variable in the class. This technique is applied to obtain bounds for moment generating functions, the coefficient of skewness and parameters associated with branching processes. In particular an improved lower bound for the Malthusian parameter in an age-dependent branching process is derived.

1974 ◽  
Vol 11 (4) ◽  
pp. 695-702 ◽  
Author(s):  
K. B. Athreya ◽  
P. R. Parthasarathy ◽  
G. Sankaranarayanan

A branching process with immigration of the following type is considered. For every i, a random number Ni of particles join the system at time . These particles evolve according to a one-dimensional age-dependent branching process with offspring p.g.f. and life time distribution G(t). Assume . Then it is shown that Z(t) e–αt converges in distribution to an extended real-valued random variable Y where a is the Malthusian parameter. We do not require the sequences {τi} or {Ni} to be independent or identically distributed or even mutually independent.


1974 ◽  
Vol 11 (04) ◽  
pp. 695-702 ◽  
Author(s):  
K. B. Athreya ◽  
P. R. Parthasarathy ◽  
G. Sankaranarayanan

A branching process with immigration of the following type is considered. For everyi, a random numberNiof particles join the system at time. These particles evolve according to a one-dimensional age-dependent branching process with offspring p.g.f.and life time distributionG(t). Assume. Then it is shown thatZ(t)e–αtconverges in distribution to an extended real-valued random variableYwhereais the Malthusian parameter. We do not require the sequences {τi} or {Ni} to be independent or identically distributed or even mutually independent.


1976 ◽  
Vol 13 (3) ◽  
pp. 455-465
Author(s):  
D. I. Saunders

For the age-dependent branching process with arbitrary state space let M(x, t, A) be the expected number of individuals alive at time t with states in A given an initial individual at x. Subject to various conditions it is shown that M(x, t, A)e–at converges to a non-trivial limit where α is the Malthusian parameter (α = 0 for the critical case, and is negative in the subcritical case). The method of proof also yields rates of convergence.


1978 ◽  
Vol 10 (04) ◽  
pp. 744-763 ◽  
Author(s):  
L. Edler

The general age-dependent branching model of Crump, Mode and Jagers will be generalized towards generation-dependent varying lifespan and reproduction distributions. A system of integral and renewal equations is established for the generating functions and the first two moments of Zi (t) (the number of individuals alive at time t), if the population was initiated at time 0 by one ancestor of age 0 from generation i. Convergence in quadratic mean of Zi (t)/EZi (t) as t tends to infinity is obtained if the generation-dependent reproduction functions converge to a supercritical one. In particular, if this convergence is slow enough t γ exp (αt) is the asymptotic behavior of EZi (t) for t tending to infinity, where γ is a positive real number and α the Malthusian parameter of growth of the limiting reproduction function.


1973 ◽  
Vol 10 (4) ◽  
pp. 739-747 ◽  
Author(s):  
P. J. Brockwell ◽  
W. H. Kuo

A supercritical age-dependent branching process is considered in which the lifespan of each individual is composed of four phases whose durations have joint probability density f(x1, x2, x3, x4). Starting with a single individual of age zero at time zero we consider the asymptotic behaviour as t→ ∞ of the random variable Z(4) (a0,…, an, t) defined as the number of individuals in phase 4 at time t for which the elapsed phase durations Y01,…, Y04,…, Yi1,…, Yi4,…, Yn4 of the individual itself and its first n ancestors satisfy the inequalities Yij ≦ aij, i = 0,…, n, j = 1,…, 4. The application of the results to the analysis of cell-labelling experiments is described. Finally we state an analogous result which defines (conditional on eventual non-extinction of the population) the asymptotic joint distribution of the phase and elapsed phase durations of an individual drawn at random from the population and the phase durations of its ancestors.


1973 ◽  
Vol 10 (1) ◽  
pp. 198-205 ◽  
Author(s):  
R. A. Doney

If Z(t) denotes the population size in a Bellman-Harris age-dependent branching process such that a non-denenerate random variable W, then it is known that E(W) = 1 and that ϕ (u) = E(e–uW) satisfies a well-known integral equation. In this situation Athreya [1] has recently found a NASC for E(W |log W| y) <∞, for γ > 0. This paper generalizes Athreya's results in two directions. Firstly a more general class of branching processes is considered; secondly conditions are found for E(W 1 + βL(W)) < ∞ for 0 β < 1, where L is one of a class of functions of slow variation.


1970 ◽  
Vol 7 (01) ◽  
pp. 89-98
Author(s):  
John Lamperti

In the first part of this paper, we will consider a class of Markov chains on the non-negative integers which resemble the Galton-Watson branching process, but with one major difference. If there are k individuals in the nth “generation”, and are independent random variables representing their respective numbers of offspring, then the (n + 1)th generation will contain max individuals rather than as in the branching case. Equivalently, the transition matrices Pij of the chains we will study are to be of the form where F(.) is the probability distribution function of a non-negative, integervalued random variable. The right-hand side of (1) is thus the probability that the maximum of i independent random variables distributed by F has the value j. Such a chain will be called a “maximal branching process”.


1975 ◽  
Vol 7 (02) ◽  
pp. 283-298
Author(s):  
Thomas H. Savits

LetXbe an age-dependent branching process with lifetime distributionGand age-dependent generating function π(y,s) = σk= 0∞pk(y)sk. We assume thatGis right-continuous andG(0+) =G(0) = 0. The base state spaceSis [0,T) whereT= inf{t:G(t) = 1}. Setm(y) = σk= 0∞k pk(y) andThen extinction occurs with probability one iffm≤ 1. In the case wherem&gt; 1, define the Malthusian parameter λ to be the unique (positive) root ofand setonS.is a-space-time harmonic function of the processXand the corresponding non-negative martingaleconverges w.p.l to a random variableW; furthermore, under a regularity assumption,Wis non-trivial iffwhereandIf 0 &lt;a≤ Φ ≤ β &lt; ∞, for some constantsa, β, thenw.p.l, whereZtis the number of particles at timet.


1976 ◽  
Vol 13 (1) ◽  
pp. 138-143 ◽  
Author(s):  
D. R. Grey

It is shown that if ϕ is a given function out of a large class satisfying a certain regularity condition, then a supercritical age-dependent branching process {Z(t)} exists with deterministic immigration and given life-length and family-size distributions such that Z(t)/(eat ϕ(t)) converges in probability to a non-zero constant, a being the appropriate Malthusian parameter.As an easy corollary one discovers the asymptotic behaviour of some processes with random immigration.


1975 ◽  
Vol 7 (2) ◽  
pp. 283-298 ◽  
Author(s):  
Thomas H. Savits

Let X be an age-dependent branching process with lifetime distribution G and age-dependent generating function π(y,s) = σk = 0∞pk(y) sk. We assume that G is right-continuous and G(0+) = G(0) = 0. The base state space S is [0,T) where T = inf{t : G(t) = 1}. Set m(y) = σk = 0∞k pk(y) and Then extinction occurs with probability one iff m ≤ 1. In the case where m > 1, define the Malthusian parameter λ to be the unique (positive) root of and set on S. is a -space-time harmonic function of the process X and the corresponding non-negative martingale converges w.p.l to a random variable W; furthermore, under a regularity assumption, W is non-trivial iff where and If 0 < a ≤ Φ ≤ β < ∞, for some constants a, β, then w.p.l, where Zt is the number of particles at time t.


Sign in / Sign up

Export Citation Format

Share Document