scholarly journals A note on generalised wreath product groups

Author(s):  
Cheryl E. Praeger ◽  
C. A. Rowley ◽  
T. P. Speed

AbstractGeneralised wreath products of permutation groups were discussed in a paper by Bailey and us. This note determines the orbits of the action of a generalised wreath product group on m–tuples (m ≥ 2) of elements of the product of the base sets on the assumption that the action on each component is m–transitive. Certain related results are also provided.

2015 ◽  
Vol 26 (01) ◽  
pp. 1550003 ◽  
Author(s):  
Mihaita Berbec

In [M. Berbec and S. Vaes, W*-superrigidity for group von Neumann algebras of left–right wreath products, Proc. London Math. Soc.108 (2014) 1116–1152] we have proven that, for all hyperbolic groups and for all nontrivial free products Γ, the left–right wreath product group 𝒢 ≔ (ℤ/2ℤ)(Γ) ⋊ (Γ × Γ) is W*-superrigid, in the sense that its group von Neumann algebra L𝒢 completely remembers the group 𝒢. In this paper, we extend this result to other classes of countable groups. More precisely, we prove that for weakly amenable groups Γ having positive first ℓ2-Betti number, the same wreath product group 𝒢 is W*-superrigid.


2012 ◽  
Vol 92 (1) ◽  
pp. 127-136 ◽  
Author(s):  
CHERYL E. PRAEGER ◽  
CSABA SCHNEIDER

AbstractWe consider the wreath product of two permutation groups G≤Sym Γ and H≤Sym Δ as a permutation group acting on the set Π of functions from Δ to Γ. Such groups play an important role in the O’Nan–Scott theory of permutation groups and they also arise as automorphism groups of graph products and codes. Let X be a subgroup of Sym Γ≀Sym Δ. Our main result is that, in a suitable conjugate of X, the subgroup of SymΓ induced by a stabiliser of a coordinate δ∈Δ only depends on the orbit of δ under the induced action of X on Δ. Hence, if X is transitive on Δ, then X can be embedded into the wreath product of the permutation group induced by the stabiliser Xδ on Γ and the permutation group induced by X on Δ. We use this result to describe the case where X is intransitive on Δ and offer an application to error-correcting codes in Hamming graphs.


1989 ◽  
Vol 40 (2) ◽  
pp. 255-279 ◽  
Author(s):  
L. G. Kovács

There is a familiar construction with two finite, transitive permutation groups as input and a finite, transitive permutation group, called their wreath product, as output. The corresponding ‘imprimitive wreath decomposition’ concept is the first subject of this paper. A formal definition is adopted and an overview obtained for all such decompositions of any given finite, transitive group. The result may be heuristically expressed as follows, exploiting the associative nature of the construction. Each finite transitive permutation group may be written, essentially uniquely, as the wreath product of a sequence of wreath-indecomposable groups, amid the two-factor wreath decompositions of the group are precisely those which one obtains by bracketing this many-factor decomposition.If both input groups are nontrivial, the output above is always imprimitive. A similar construction gives a primitive output, called the wreath product in product action, provided the first input group is primitive and not regular. The second subject of the paper is the ‘product action wreath decomposition’ concept dual to this. An analogue of the result stated above is established for primitive groups with nonabelian socle.Given a primitive subgroup G with non-regular socle in some symmetric group S, how many subgroups W of S which contain G and have the same socle, are wreath products in product action? The third part of the paper outlines an algorithm which reduces this count to questions about permutation groups whose degrees are very much smaller than that of G.


2004 ◽  
Vol 77 (1) ◽  
pp. 55-72 ◽  
Author(s):  
Robert W. Baddeley ◽  
Cheryl E. Praeger ◽  
Csaba Schneider

AbstractA transitive simple subgroup of a finite symmetric group is very rarely contained in a full wreath product in product action. All such simple permutation groups are determined in this paper. This remarkable conclusion is reached after a definition and detailed examination of ‘Cartesian decompositions’ of the permuted set, relating them to certain ‘Cartesian systems of subgroups’. These concepts, and the bijective connections between them, are explored in greater generality, with specific future applications in mind.


2007 ◽  
Vol 18 (05) ◽  
pp. 473-481
Author(s):  
BAOHUA FU

We recover the wreath product X ≔ Sym 2(ℂ2/± 1) as a transversal slice to a nilpotent orbit in 𝔰𝔭6. By using deformations of Springer resolutions, we construct a symplectic deformation of symplectic resolutions of X.


2009 ◽  
Vol 2009 ◽  
pp. 1-12 ◽  
Author(s):  
Jeffrey M. Riedl

We present a useful new characterization of the automorphisms of the regular wreath product group of a finite cyclic -group by a finite cyclic -group, for any prime , and we discuss an application. We also present a short new proof, based on representation theory, for determining the order of the automorphism group Aut(), where is the regular wreath product of a finite cyclic -group by an arbitrary finite -group.


2012 ◽  
Vol 55 (2) ◽  
pp. 390-399 ◽  
Author(s):  
Jeffrey M. Riedl

AbstractWe determine the order of the automorphism group Aut(W) for each member W of an important family of finite p-groups that may be constructed as iterated regular wreath products of cyclic groups. We use a method based on representation theory.


2020 ◽  
pp. 1-12 ◽  
Author(s):  
ADRIEN LE BOUDEC

We consider the finitely generated groups acting on a regular tree with almost prescribed local action. We show that these groups embed as cocompact irreducible lattices in some locally compact wreath products. This provides examples of finitely generated simple groups quasi-isometric to a wreath product $C\wr F$ , where $C$ is a finite group and $F$ a non-abelian free group.


2001 ◽  
Vol 33 (6) ◽  
pp. 653-661 ◽  
Author(s):  
CAI HENG LI ◽  
CHERYL E. PRAEGER

A construction is given of an infinite family of finite self-complementary, vertex-transitive graphs which are not Cayley graphs. To the authors' knowledge, these are the first known examples of such graphs. The nature of the construction was suggested by a general study of the structure of self-complementary, vertex-transitive graphs. It involves the product action of a wreath product of permutation groups.


Sign in / Sign up

Export Citation Format

Share Document