scholarly journals On exponential sums over prime numbers

Author(s):  
A. Sárközy ◽  
C. L. Stewart

AbstractIn this article we establish an estimate for a sum over primes that is the analogue of an estimate for a sum over consecutive integers which has proved to be very useful in applications of exponential sums to problems in number theory.

Author(s):  
Carleilton Severino Silva

Since 1742, the year in which the Prussian Christian Goldbach wrote a letter to Leonhard Euler with his Conjecture in the weak version, mathematicians have been working on the problem. The tools in number theory become the most sophisticated thanks to the resolution solutions. Euler himself said he was unable to prove it. The weak guess in the modern version states the following: any odd number greater than 5 can be written as the sum of 3 primes. In response to Goldbach's letter, Euler reminded him of a conversation in which he proposed what is now known as Goldbach's strong conjecture: any even number greater than 2 can be written as a sum of 2 prime numbers. The most interesting result came in 2013, with proof of weak version by the Peruvian Mathematician Harald Helfgott, however the strong version remained without a definitive proof. The weak version can be demonstrated without major difficulties and will not be described in this article, as it becomes a corollary of the strong version. Despite the enormous intellectual baggage that great mathematicians have had over the centuries, the Conjecture in question has not been validated or refuted until today.


2019 ◽  
Vol 19 (06) ◽  
pp. 2050101
Author(s):  
M. H. Hooshmand

This paper is the first step of a new topic about groups which has close relations and applications to number theory. Considering the factorization of a group into a direct product of two subsets, and since every subgroup is a left and right factor, we observed that the index conception can be generalized for a class of factors. But, thereafter, we found that every subset [Formula: see text] of a group [Formula: see text] has four related sub-indexes: right, left, upper and lower sub-indexes [Formula: see text], [Formula: see text] which agree with the conception index of subgroups, and all of them are equal if [Formula: see text] is a subgroup or normal sub-semigroup of [Formula: see text]. As a result of the topic, we introduce some equivalent conditions to a famous conjecture for prime numbers (“every even number is the difference of two primes”) that one of them is: the prime numbers set is index stable (i.e. all of its sub-indexes are equal) in integers and [Formula: see text]. Index stable groups (i.e. those whose subsets are all index stable) are a challenging subject of the topic with several results and ideas. Regarding the extension of the theory, we give some methods for evaluation of sub-indexes, by using the left and right differences of subsets. At last, we pose many open problems, questions, a proposal for additive number theory, and show some future directions of researches and projects for the theory.


2005 ◽  
Vol 98 (8) ◽  
pp. 525-529
Author(s):  
Jeffrey J. Wanko

The search for prime numbers has long held a great fascination for mathematicians and for mathematics enthusiasts. Whether as a mathematical recreation or as a serious study within number theory, this quest has resulted in some profound mathematical advances and in a few surprising results that held some unforeseen applications and connections to other areas. For example, the problems of finding perfect numbers and constructible regular polygons have both been simplified through the search for prime numbers (Bell 1937, Clawson 1996).


Lord Cherwell (i) was, of course, a very distinguished ex-perimental physicist but he had (like many others) a considerable active interest in the theory of numbers. I met him in 1930 when Christ Church, Oxford, elected me to a Senior (postgraduate) Scholarship and I migrated there from my original college. Cherwell’s first published work (2) in the theory of numbers was a very simple and elegant proof of the fundamental theorem of arithmetic, that any positive integer can be expressed as a product of prime numbers in just one way (apart from a possible rearrangement of the order of the factors). (A prime is a positive integer greater than 1 whose only factors are 1 and itself.) His proof is by the method of descent (used by Fermat, but not for this problem). Assume the fundamental theorem false and call any number that can be expressed as a product of primes in two or more ways abnormal.


2017 ◽  
Vol 96 (1) ◽  
pp. 24-29 ◽  
Author(s):  
CARLO SANNA

The quotient set of $A\subseteq \mathbb{N}$ is defined as $R(A):=\{a/b:a,b\in A,b\neq 0\}$. Using algebraic number theory in $\mathbb{Q}(\sqrt{5})$, Garcia and Luca [‘Quotients of Fibonacci numbers’, Amer. Math. Monthly, to appear] proved that the quotient set of Fibonacci numbers is dense in the $p$-adic numbers $\mathbb{Q}_{p}$ for all prime numbers $p$. For any integer $k\geq 2$, let $(F_{n}^{(k)})_{n\geq -(k-2)}$ be the sequence of $k$-generalised Fibonacci numbers, defined by the initial values $0,0,\ldots ,0,1$ ($k$ terms) and such that each successive term is the sum of the $k$ preceding terms. We use $p$-adic analysis to generalise the result of Garcia and Luca, by proving that the quotient set of $k$-generalised Fibonacci numbers is dense in $\mathbb{Q}_{p}$ for any integer $k\geq 2$ and any prime number $p$.


Author(s):  
Zurab Agdgomelashvili ◽  

The article considers the following issues: – It’s of great interest for p and q primes to determine the number of those prime number divisors of a number 1 1 pq A p    that are less than p. With this purpose we have considered: Theorem 1. Let’s p and q are odd prime numbers and p  2q 1. Then from various individual divisors of the 1 1 pq A p    number, only one of them is less than p. A has at least two different simple divisors; Theorem 2. Let’s p and q are odd prime numbers and p  2q 1. Then all prime divisors of the number 1 1 pq A p    are greater than p; Theorem 3. Let’s q is an odd prime number, and p N \{1}, p]1;q] [q  2; 2q] , then each of the different prime divisors of the number 1 1 pq A p    taken separately is greater than p; Theorem 4. Let’s q is an odd prime number, and p{q1; 2q1}, then from different prime divisors of the number 1 1 pq A p    taken separately, only one of them is less than p. A has at least two different simple divisors. Task 1. Solve the equation 1 2 1 z x y y    in the natural numbers x , y, z. In addition, y must be a prime number. Task 2. Solve the equation 1 3 1 z x y y    in the natural numbers x , y, z. In addition, y must be a prime number. Task 3. Solve the equation 1 1 z x y p y    where p{6; 7; 11; 13;} are the prime numbers, x, y  N and y is a prime number. There is a lema with which the problem class can be easily solved: Lemma ●. Let’s a, b, nN and (a,b) 1. Let’s prove that if an  0 (mod| ab|) , or bn  0 (mod| ab|) , then | ab|1. Let’s solve the equations ( – ) in natural x , y numbers: I. 2 z x y z z x y          ; VI. (x  y)xy  x y ; II. (x  y)z  (2x)z  yz ; VII. (x  y)xy  yx ; III. (x  y)z  (3x)z  yz ; VIII. (x  y) y  (x  y)x , (x  y) ; IV. ( y  x)x y  x y , (y  x) ; IX. (x  y)x y  xxy ; V. ( y  x)x y  yx , (y  x) ; X. (x  y)xy  (x  y)x , (y  x) . Theorem . If a, bN (a,b) 1, then each of the divisors (a2  ab  b2 ) will be similar. The concept of pseudofibonacci numbers is introduced and some of their properties are found.


2021 ◽  
Vol 29 (1) ◽  
pp. 63-68
Author(s):  
Artur Korniłowicz ◽  
Dariusz Surowik

Summary In this paper problems 14, 15, 29, 30, 34, 78, 83, 97, and 116 from [6] are formalized, using the Mizar formalism [1], [2], [3]. Some properties related to the divisibility of prime numbers were proved. It has been shown that the equation of the form p 2 + 1 = q 2 + r 2, where p, q, r are prime numbers, has at least four solutions and it has been proved that at least five primes can be represented as the sum of two fourth powers of integers. We also proved that for at least one positive integer, the sum of the fourth powers of this number and its successor is a composite number. And finally, it has been shown that there are infinitely many odd numbers k greater than zero such that all numbers of the form 22 n + k (n = 1, 2, . . . ) are composite.


2020 ◽  
Vol 69 ◽  
pp. 225-246
Author(s):  
D. R. Heath-Brown

Christopher Hooley was one of the leading analytic number theorists of his day, world-wide. His early work on Artin’s conjecture for primitive roots remains the definitive investigation in the area. His greatest contribution, however, was the introduction of exponential sums into every corner of analytic number theory, bringing the power of Deligne’s ‘Riemann hypothesis’ for varieties over finite fields to bear throughout the subject. For many he was a figure who bridged the classical period of Hardy and Littlewood with the modern era. This biographical sketch describes how he succeeded in applying the latest tools to famous old problems.


2020 ◽  
Author(s):  
Sourangshu Ghosh

In this paper, we shall try to prove the Riemann Hypothesis which is a conjecture that the Riemann zeta function hasits zeros only at the negative even integers and complex numbers with real part ½. This conjecture is very importantand of considerable interest in number theory because it tells us about the distribution of prime numbers along thereal line. This problem is one of the clay mathematics institute’s millennium problems and also comprises the 8ththe problem of Hilbert’s famous list of 23 unsolved problems. There have been many unsuccessful attempts in provingthe hypothesis. In this paper, we shall give proof to the Riemann Hypothesis.


Author(s):  
Rong Pan ◽  
Qinheping Hu ◽  
Rishabh Singh ◽  
Loris D’Antoni

AbstractProgram sketching is a program synthesis paradigm in which the programmer provides a partial program with holes and assertions. The goal of the synthesizer is to automatically find integer values for the holes so that the resulting program satisfies the assertions. The most popular sketching tool, Sketch, can efficiently solve complex program sketches, but uses an integer encoding that often performs poorly if the sketched program manipulates large integer values. In this paper, we propose a new solving technique that allows Sketch to handle large integer values while retaining its integer encoding. Our technique uses a result from number theory, the Chinese Remainder Theorem, to rewrite program sketches to only track the remainders of certain variable values with respect to several prime numbers. We prove that our transformation is sound and the encoding of the resulting programs are exponentially more succinct than existing Sketch encodings. We evaluate our technique on a variety of benchmarks manipulating large integer values. Our technique provides speedups against both existing Sketch solvers and can solve benchmarks that existing Sketch solvers cannot handle.


Sign in / Sign up

Export Citation Format

Share Document