scholarly journals On mean curvature flow of spacelike hypersurfaces in asymptotically flat spacetimes

Author(s):  
Klaus Ecker

AbstractWe prove a priori estimates for the gradient and curvature of spacelike hypersurfaces moving by mean curvature in a Lorentzian manifold. These estimates are obtained under much weaker conditions than have been previously assumed. We also use mean curvature flow in the construction of maximal slices in asymptotically flat spacetimes. An essential tool is a maximum principle for sub-solutions of a parabolic operator on complete Riemannian manifolds with time-dependent metric.

Author(s):  
Klaus Kröncke ◽  
Oliver Lindblad Petersen ◽  
Felix Lubbe ◽  
Tobias Marxen ◽  
Wolfgang Maurer ◽  
...  

2019 ◽  
Vol 2019 (756) ◽  
pp. 227-257 ◽  
Author(s):  
Jeffrey L. Jauregui ◽  
Dan A. Lee

AbstractGiven a sequence of asymptotically flat 3-manifolds of nonnegative scalar curvature with outermost minimal boundary, converging in the pointed {C^{0}} Cheeger–Gromov sense to an asymptotically flat limit space, we show that the total mass of the limit is bounded above by the liminf of the total masses of the sequence. In other words, total mass is lower semicontinuous under such convergence. In order to prove this, we use Huisken’s isoperimetric mass concept, together with a modified weak mean curvature flow argument. We include a brief discussion of Huisken’s work before explaining our extension of that work. The results are all specific to three dimensions.


Author(s):  
Michael Holder

AbstractIn this work we study the behaviour of compact, smooth, orientable, spacelike hypersurfaces without boundary, which are immersed in cosmological spacetimes and move under the inverse mean curvature flow. We prove longtime existence and regularity of a solution to the corresponding nonlinear parabolic system of partial differential equations.


2020 ◽  
Vol 18 (1) ◽  
pp. 1518-1530
Author(s):  
Xuesen Qi ◽  
Ximin Liu

Abstract In this paper, we discuss the monotonicity of the first nonzero eigenvalue of the Laplace operator and the p-Laplace operator under a forced mean curvature flow (MCF). By imposing conditions associated with the mean curvature of the initial hypersurface and the coefficient function of the forcing term of a forced MCF, and some special pinching conditions on the second fundamental form of the initial hypersurface, we prove that the first nonzero closed eigenvalues of the Laplace operator and the p-Laplace operator are monotonic under the forced MCF, respectively, which partially generalize Mao and Zhao’s work. Moreover, we give an example to specify applications of conclusions obtained above.


2017 ◽  
Vol 369 (12) ◽  
pp. 8319-8342 ◽  
Author(s):  
Glen Wheeler ◽  
Valentina-Mira Wheeler

Author(s):  
Peng Lu ◽  
Jiuru Zhou

AbstractWe construct the ancient solutions of the hypersurface flows in Euclidean spaces studied by B. Andrews in 1994.As time {t\rightarrow 0^{-}} the solutions collapse to a round point where 0 is the singular time. But as {t\rightarrow-\infty} the solutions become more and more oval. Near the center the appropriately-rescaled pointed Cheeger–Gromov limits are round cylinder solutions {S^{J}\times\mathbb{R}^{n-J}}, {1\leq J\leq n-1}. These results are the analog of the corresponding results in Ricci flow ({J=n-1}) and mean curvature flow.


Sign in / Sign up

Export Citation Format

Share Document