flat spacetimes
Recently Published Documents


TOTAL DOCUMENTS

142
(FIVE YEARS 31)

H-INDEX

26
(FIVE YEARS 3)

2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Venkatesa Chandrasekaran ◽  
Éanna É. Flanagan ◽  
Ibrahim Shehzad ◽  
Antony J. Speranza

Abstract The Brown-York stress tensor provides a means for defining quasilocal gravitational charges in subregions bounded by a timelike hypersurface. We consider the generalization of this stress tensor to null hypersurfaces. Such a stress tensor can be derived from the on-shell subregion action of general relativity associated with a Dirichlet variational principle, which fixes an induced Carroll structure on the null boundary. The formula for the mixed-index tensor Tij takes a remarkably simple form that is manifestly independent of the choice of auxiliary null vector at the null surface, and we compare this expression to previous proposals for null Brown-York stress tensors. The stress tensor we obtain satisfies a covariant conservation equation with respect to any connection induced from a rigging vector at the hypersurface, as a result of the null constraint equations. For transformations that act covariantly on the boundary structures, the Brown-York charges coincide with canonical charges constructed from a version of the Wald-Zoupas procedure. For anomalous transformations, the charges differ by an intrinsic functional of the boundary geometry, which we explicity verify for a set of symmetries associated with finite null hyper-surfaces. Applications of the null Brown-York stress tensor to symmetries of asymptotically flat spacetimes and celestial holography are discussed.


Author(s):  
Peter Hintz

AbstractWe prove Price’s law with an explicit leading order term for solutions $$\phi (t,x)$$ ϕ ( t , x ) of the scalar wave equation on a class of stationary asymptotically flat $$(3+1)$$ ( 3 + 1 ) -dimensional spacetimes including subextremal Kerr black holes. Our precise asymptotics in the full forward causal cone imply in particular that $$\phi (t,x)=c t^{-3}+{\mathcal {O}}(t^{-4+})$$ ϕ ( t , x ) = c t - 3 + O ( t - 4 + ) for bounded |x|, where $$c\in {\mathbb {C}}$$ c ∈ C is an explicit constant. This decay also holds along the event horizon on Kerr spacetimes and thus renders a result by Luk–Sbierski on the linear scalar instability of the Cauchy horizon unconditional. We moreover prove inverse quadratic decay of the radiation field, with explicit leading order term. We establish analogous results for scattering by stationary potentials with inverse cubic spatial decay. On the Schwarzschild spacetime, we prove pointwise $$t^{-2 l-3}$$ t - 2 l - 3 decay for waves with angular frequency at least l, and $$t^{-2 l-4}$$ t - 2 l - 4 decay for waves which are in addition initially static. This definitively settles Price’s law for linear scalar waves in full generality. The heart of the proof is the analysis of the resolvent at low energies. Rather than constructing its Schwartz kernel explicitly, we proceed more directly using the geometric microlocal approach to the limiting absorption principle pioneered by Melrose and recently extended to the zero energy limit by Vasy.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
A. Guevara ◽  
E. Himwich ◽  
M. Pate ◽  
A. Strominger

Abstract All 4D gauge and gravitational theories in asymptotically flat spacetimes contain an infinite number of non-trivial symmetries. They can be succinctly characterized by generalized 2D currents acting on the celestial sphere. A complete classification of these symmetries and their algebras is an open problem. Here we construct two towers of such 2D currents from positive-helicity photons, gluons, or gravitons with integer conformal weights. These generate the symmetries associated to an infinite tower of conformally soft theorems. The current algebra commutators are explicitly derived from the poles in the OPE coefficients, and found to comprise a rich closed subalgebra of the complete symmetry algebra.


Author(s):  
Yashmitha Kumaran ◽  
Ali Övgün

In this review, various researches on finding the bending angle of light deflected by a massive gravitating object which regard the Gauss-Bonnet theorem as the premise have been revised. Primarily, the Gibbons and Werner method is studied apropos of the gravitational lensing phenomenon in the weak field limits. Some exclusive instances are deliberated while calculating the deflection angle, beginning with the finite-distance corrections on non-asymptotically flat spacetimes. Effects of plasma medium is then inspected to observe its contribution to the deflection angle. Finally, the Jacobi metric is explored as an alternative method, only to arrive at similar results. All of the cases are probed in three constructs, one as a generic statement of explanation, one for black holes, and one for wormholes, so as to gain a perspective on every kind of influence.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Nabamita Banerjee ◽  
Karan Fernandes ◽  
Arpita Mitra

Abstract We study the effect of electromagnetic interactions on the classical soft theorems on an asymptotically AdS background in 4 spacetime dimensions, in the limit of a small cosmological constant or equivalently a large AdS radius l. This identifies 1/l2 perturbative corrections to the known asymptotically flat spacetime leading and subleading soft factors. Our analysis is only valid to leading order in 1/l2. The leading soft factor can be expected to be universal and holds beyond tree level. This allows us to derive a 1/l2 corrected Ward identity, following the known equivalence between large gauge Ward identities and soft theorems in asymptotically flat spacetimes.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Arjun Bagchi ◽  
Sudipta Dutta ◽  
Kedar S. Kolekar ◽  
Punit Sharma

Abstract Two dimensional field theories with Bondi-Metzner-Sachs symmetry have been proposed as duals to asymptotically flat spacetimes in three dimensions. These field theories are naturally defined on null surfaces and hence are conformal cousins of Carrollian theories, where the speed of light goes to zero. In this paper, we initiate an investigation of anomalies in these field theories. Specifically, we focus on the BMS equivalent of Weyl invariance and its breakdown in these field theories and derive an expression for Weyl anomaly. Considering the transformation of partition functions under this symmetry, we derive a Carrollian Liouville action different from ones obtained in the literature earlier.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Glenn Barnich ◽  
Romain Ruzziconi

Abstract The coadjoint representation of the BMS group in four dimensions is constructed in a formulation that covers both the sphere and the punctured plane. The structure constants are worked out for different choices of bases. The conserved current algebra of non-radiative asymptotically flat spacetimes is explicitly interpreted in these terms.


2021 ◽  
Vol 53 (6) ◽  
Author(s):  
M. A. H. MacCallum

AbstractConditions are found which ensure that local boost invariance (LBI), invariance under a linear boost isotropy, implies local boost symmetry (LBS), i.e. the existence of a local group of motions such that for every point P in a neighbourhood there is a boost leaving P fixed. It is shown that for Petrov type D spacetimes this requires LBI of the Riemann tensor and its first derivative. That is also true for most conformally flat spacetimes, but those with Ricci tensors of Segre type [1(11,1)] may require LBI of the first three derivatives of curvature to ensure LBS.


Sign in / Sign up

Export Citation Format

Share Document