scholarly journals UNIQUENESS OF SOLUTIONS TO SCHRÖDINGER EQUATIONS ON -TYPE GROUPS

2013 ◽  
Vol 95 (3) ◽  
pp. 297-314 ◽  
Author(s):  
SALEM BEN SAÏD ◽  
SUNDARAM THANGAVELU ◽  
VENKU NAIDU DOGGA

AbstractThis paper deals with the Schrödinger equation $i{\partial }_{s} u(\mathbf{z} , t; s)- \mathcal{L} u(\mathbf{z} , t; s)= 0, $ where $ \mathcal{L} $ is the sub-Laplacian on the Heisenberg group. Assume that the initial data $f$ satisfies $\vert f(\mathbf{z} , t)\vert \lesssim {q}_{\alpha } (\mathbf{z} , t), $ where ${q}_{s} $ is the heat kernel associated to $ \mathcal{L} . $ If in addition $\vert u(\mathbf{z} , t; {s}_{0} )\vert \lesssim {q}_{\beta } (\mathbf{z} , t), $ for some ${s}_{0} \in \mathbb{R} \setminus \{ 0\} , $ then we prove that $u(\mathbf{z} , t; s)= 0$ for all $s\in \mathbb{R} $ whenever $\alpha \beta \lt { s}_{0}^{2} . $ This result holds true in the more general context of $H$-type groups. We also prove an analogous result for the Grushin operator on ${ \mathbb{R} }^{n+ 1} . $

Author(s):  
AINGERU FERNÁNDEZ-BERTOLIN ◽  
PHILIPPE JAMING ◽  
SALVADOR PÉREZ-ESTEVA

In this paper we consider uncertainty principles for solutions of certain partial differential equations on $H$ -type groups. We first prove that, on $H$ -type groups, the heat kernel is an average of Gaussians in the central variable, so that it does not satisfy a certain reformulation of Hardy’s uncertainty principle. We then prove the analogue of Hardy’s uncertainty principle for solutions of the Schrödinger equation with potential on $H$ -type groups. This extends the free case considered by Ben Saïd et al. [‘Uniqueness of solutions to Schrödinger equations on H-type groups’, J. Aust. Math. Soc. (3)95 (2013), 297–314] and by Ludwig and Müller [‘Uniqueness of solutions to Schrödinger equations on 2-step nilpotent Lie groups’, Proc. Amer. Math. Soc.142 (2014), 2101–2118].


Author(s):  
Der-Chen Chang ◽  
Yutian Li

The sub-Laplacian on the Heisenberg group and the Grushin operator are typical examples of sub-elliptic operators. Their heat kernels are both given in the form of Laplace-type integrals. By using Laplace's method, the method of stationary phase and the method of steepest descent, we derive the small-time asymptotic expansions for these heat kernels, which are related to the geodesic structure of the induced geometries.


2004 ◽  
Vol 56 (3) ◽  
pp. 590-611
Author(s):  
Yilong Ni

AbstractWe study the Riemannian Laplace-Beltrami operator L on a Riemannian manifold with Heisenberg group H1 as boundary. We calculate the heat kernel and Green's function for L, and give global and small time estimates of the heat kernel. A class of hypersurfaces in this manifold can be regarded as approximations of H1. We also restrict L to each hypersurface and calculate the corresponding heat kernel and Green's function. We will see that the heat kernel and Green's function converge to the heat kernel and Green's function on the boundary.


2015 ◽  
Vol 58 (3) ◽  
pp. 471-485 ◽  
Author(s):  
Seckin Demirbas

AbstractIn a previous paper, we proved that the 1-d periodic fractional Schrödinger equation with cubic nonlinearity is locally well-posed inHsfors> 1 −α/2 and globally well-posed fors> 10α− 1/12. In this paper we define an invariant probability measureμonHsfors<α− 1/2, so that for any ∊ > 0 there is a set Ω ⊂Hssuch thatμ(Ωc) <∊and the equation is globally well-posed for initial data in Ω. We see that this fills the gap between the local well-posedness and the global well-posedness range in an almost sure sense forin an almost sure sense.


Author(s):  
Gyu Eun Lee

Abstract We study the scattering problem for the nonlinear Schrödinger equation $i\partial _t u + \Delta u = |u|^p u$ on $\mathbb{R}^d$, $d\geq 1$, with a mass-subcritical nonlinearity above the Strauss exponent. For this equation, it is known that asymptotic completeness in $L^2$ with initial data in $\Sigma$ holds and the wave operator is well defined on $\Sigma$. We show that there exists $0&lt;\beta &lt;p$ such that the wave operator and the data-to-scattering-state map do not admit extensions to maps $L^2\to L^2$ of class $C^{1+\beta }$ near the origin. This constitutes a mild form of ill-posedness for the scattering problem in the $L^2$ topology.


2000 ◽  
Vol 23 (6) ◽  
pp. 369-382 ◽  
Author(s):  
Jong Yeoul Park ◽  
Jeong Ja Bae

We investigate the existence and uniqueness of solutions of the following equation of hyperbolic type with a strong dissipation:utt(t,x)−(α+β(∫Ω|∇u(t,y)|2dy)γ)Δu(t,x)                                −λΔut(t,x)+μ|u(t,x)|q−1u(t,x)=0,     x∈Ω,t≥0            u(0,x)=u0(x),          ut(0,x)=u1(x),      x∈Ω,  u|∂Ω=0, whereq>1,λ>0,μ∈ℝ,α,β≥0,α+β>0, andΔis the Laplacian inℝN.


2018 ◽  
Vol 149 (6) ◽  
pp. 1405-1419
Author(s):  
Simão Correia

AbstractWe consider the Cauchy problem for the nonlinear Schrödinger equation on the whole space. After introducing a weaker concept of finite speed of propagation, we show that the concatenation of initial data gives rise to solutions whose time of existence increases as one translates one of the initial data. Moreover, we show that, given global decaying solutions with initial data u0, v0, if |y| is large, then the concatenated initial data u0 + v0(· − y) gives rise to globally decaying solutions.


Sign in / Sign up

Export Citation Format

Share Document