Dosimetric evaluation of a novel electron–photon mixed beam, produced by a medical linear accelerator

2018 ◽  
Vol 17 (3) ◽  
pp. 319-331
Author(s):  
Navid Khaledi ◽  
Dariush Sardari ◽  
Mohammad Mohammadi ◽  
Ahmad Ameri ◽  
Nick Reynaert

AbstractAimThis study deals with the characteristics of simultaneous photon and electron beams in homogenous and inhomogeneous phantoms by experimental and Monte Carlo dosimetry, for therapeutic purposes. Materials and methods: Both 16 and 20 MeV high-energy electron beams were used as the original beam to strike perforated lead sheets to produce the mixed beam. The dosimetry results were achieved by measurement in an ion chamber in a water phantom and film dosimetry in a Perspex nasal phantom, and then compared with those calculated through a simulation approach. To evaluate two-dimensional dose distribution in the inhomogeneous medium, the dose–area histogram was obtained.ResultsThe highest percentage of photon contribution in mixed beam was found to be 36% for 2-mm thickness of lead layer with holes diameter of 0·2 cm for a 20 MeV primary electron energy. For small fields, the percentage depth dose parameters variations were found to be similar to pure electron beam within ±2%. The most feasible flatness in beam profile was 11% for pure electron and 7% for the mixed beam. Penumbra changes as function of depth was about ten times better than in pure electron field.ConclusionsThe results present some dosimetric advantages that can make this study a platform for the production of simultaneous mixed beams in future linear accelerators (LINACs), which through redesign of the LINAC head, which could lead to setup error reduction and a decrease of intra-fractional tumour cells repair.

2022 ◽  
Vol 12 (2) ◽  
pp. 600
Author(s):  
Serenella Russo ◽  
Silvia Bettarini ◽  
Barbara Grilli Leonulli ◽  
Marco Esposito ◽  
Paolo Alpi ◽  
...  

High-energy small electron beams, generated by linear accelerators, are used for radiotherapy of localized superficial tumours. The aim of the present study is to assess the dosimetric performance under small radiation therapy electron beams of the novel PTW microSilicon detector compared to other available dosimeters. Relative dose measurements of circular fields with 20, 30, 40, and 50 mm aperture diameters were performed for electron beams generated by an Elekta Synergy linac, with energy between 4 and 12 MeV. Percentage depth dose, transverse profiles, and output factors, normalized to the 10 × 10 cm2 reference field, were measured. All dosimetric data were collected in a PTW MP3 motorized water phantom, at SSD of 100 cm, by using the novel PTW microSilicon detector. The PTW diode E and the PTW microDiamond were also used in all beam apertures for benchmarking. Data for the biggest field size were also measured by the PTW Advanced Markus ionization chamber. Measurements performed by the microSilicon are in good agreement with the reference values for all the tubular applicators and beam energies within the stated uncertainties. This confirms the reliability of the microSilicon detector for relative dosimetry of small radiation therapy electron beams collimated by circular applicators.


Author(s):  
Serenella Russo ◽  
Silvia Bettarini ◽  
Barbara Grilli Leonulli ◽  
Marco Esposito ◽  
Paolo Alpi ◽  
...  

High-energy small electron beams generated by linear accelerators are used for radiotherapy of localized superficial tumors. The aim of the present study is to assess the dosimetric performance under small radiation therapy electron beams of the novel PTW microSilicon detector by comparison with commercially available dosimeters. Relative dose measurements of circular fields with 20, 30, 40 and 50 mm aperture diameters were performed for 4 to 12 MeV energy range of electron beams generated by an Elekta Synergy linac. Percentage depth dose, transverse profiles and output factors normalized to the 10 × 10 cm2 reference field were measured. All dosimetric data were collected in a PTW MP3 motorized water phantom at SSD of 100cm by using the novel PTW microSilicon detector. The PTW diode E and the PTW microDiamond were also used in all beam aperture for benchmarking. Data for the biggest field size were also measured by the PTW Advanced Markus ionization chamber.Measurements performed by the microSilicon are in good agreement with the reference values for all the tubular applicators and beam energies, within the stated uncertainties. This confirms the reliability of the microSilicon detector for relative dosimetry of small radiation therapy electron beams collimated by tubular applicators.


1996 ◽  
Vol 14 (3) ◽  
pp. 519-528
Author(s):  
Stanley Humphries

High-intensity electron beams could be focused in low-frequency RF accelerators and induction linear accelerators by adding transverse components to the accelerating electric field. Calculations with a 3D code show that quasielectrostatic focusing is sufficient to transport kiloampere electron beams in RF accelerators and the high-energy sections of induction accelerators. The elimination of conventional magnetic focusing systems could lead to reductions in the volume and weight of high-current electron accelerators. Two novel quadrupole geometries are investigated: a periodic array of spherical electrodes with alternating displacements and a set of plate electrodes with elliptical apertures.


2021 ◽  
Vol 9 (B) ◽  
pp. 1730-1738
Author(s):  
Kamal Saidi ◽  
Othmane Kaanouch ◽  
Hanae El Gouach ◽  
Mohamed Reda Mesradi ◽  
Mounir Mkimel ◽  
...  

Electron beam measurement comparison between TrueBeam STx® and Clinac iX® established. Data evaluation of eMC-calculated and measured for TrueBeam STx® performed. Dosimetric parameters measured including depth dose curves for each applicator, percentage depth dose (PDDs) curves without applicator, the profile in-air for a large field size 40×40 cm2, and the Absolute Dose (cGy/MU) for each applicator using a large water phantom (PTW, Freiburg, Germany), employing Roos and Markus plane-parallel ionization chambers. The data were examined for five electron beams of Varian’s TrueBeam STx® and Clinac iX® machines. A comparison between measurement PDDs and calculated by the Eclipse electron Monte Carlo (eMC) algorithm was performed to validate Truebeam STx® commissioning. The measured data indicated that electron beam PDDs from the TrueBeam STx® machine are well matched to those from Clinac iX® machine. The quality index R50 for applicator 15×15 cm2 was in the tolerance intervals. However, Surface dose (Ds) increases with increasing energy for both accelerators. Comparisons between the measured and eMC-calculated values revealed that the R100, R90, R80, and R50 values mostly agree within 5 mm. Measured and calculated bremsstrahlung tail Rp correlates well statistically. Ds agrees mostly within 2%. Electron beams were successfully validated for TrueBeam STx®, a good agreement between modeled and measured data was observed.


Radiology ◽  
1956 ◽  
Vol 66 (1) ◽  
pp. 102-104 ◽  
Author(s):  
Lewis L. Haas ◽  
Glen H. Sandberg
Keyword(s):  
X Ray ◽  

Sign in / Sign up

Export Citation Format

Share Document