Investigation of field output factors using IAEA-AAPM TRS-483 code of practice recommendations and Monte Carlo simulation for 6 MV photon beams

Author(s):  
Sumalee Yabsantia ◽  
Sivalee Suriyapee ◽  
Nakorn Phaisangittisakul ◽  
Sornjarod Oonsiri ◽  
Taweap Sanghangthum ◽  
...  

Abstract Introduction: This study aims to experimentally determine field output factors using the methodologies suggested by the IAEA-AAPM TRS-483 for small field dosimetry and compare with the calculation from Monte Carlo (MC) simulation. Methods: The IBA-CC01, Sun Nuclear EDGE and IBA-SFD detectors were employed to determine the uncorrected and the corrected field output factors for 6 MV photon beams. Measurements were performed at 100 cm source to axis distance, 10 cm depth in water, and the field sizes ranged from 1 × 1 to 10 × 10 cm2. The use of field output correction factors proposed by the TRS-483 was utilised to determine field output factors. The measured field output factors were compared to that calculated using the egs_chamber user code. Results: The decrease in the percentage standard deviation of the measured three detectors was observed after applying the field output correction factors. Measured field output factors using CC01 and EDGE detectors agreed with MC values within 3% for field sizes down to 1 × 1 cm2, except the SFD detector. Conclusions: The corrected field output factors agree with the calculation from MC, except the SFD detector. CC01 and EDGE are suitable for determining field output factors, while the SFD may need more implementation of the intermediate field method.

2019 ◽  
Vol 9 (1Feb) ◽  
Author(s):  
S A Rahimi ◽  
B Hashemi ◽  
S R Mahdavi

Background: Estimating dosimetric parameters for small fields under non-reference conditions leads to significant errors if done based on conventional protocols used for large fields in reference conditions. Hence, further correction factors have been introduced to take into account the influence of spectral quality changes when various detectors are used in non-reference conditions at different depths and field sizes.Objective: Determining correction factors (KNR and KNCSF) recommended recently for small field dosimetry formalism by American Association of Physicists in Medicine (AAPM) for different detectors at 6 and 18 MV photon beams.Methods: EGSnrc Monte Carlo code was used to calculate the doses measured with different detectors located in a slab phantom and the recommended KNR and KNCSF correction factors for various circular small field sizes ranging from 5-30 mm diameters. KNR and KNCSF correction factors were determined for different active detectors (a pinpoint chamber, EDP-20 and EDP-10 diodes) in a homogeneous phantom irradiated to 6 and 18 MV photon beams of a Varian linac (2100C/D).Results: KNR correction factor estimated for the highest small circular field size of 30 mm diameter for the pinpoint chamber, EDP-20 and EDP-10 diodes were 0.993, 1.020 and 1.054; and 0.992, 1.054 and 1.005 for the 6 and 18 MV beams, respectively. The KNCSF correction factor estimated for the lowest circular field size of 5 mm for the pinpoint chamber, EDP-20 and EDP-10 diodes were 0.994, 1.023, and 1.040; and 1.000, 1.014, and 1.022 for the 6 and 18 MV photon beams, respectively.Conclusion: Comparing the results obtained for the detectors used in this study reveals that the unshielded diodes (EDP-20 and EDP-10) can confidently be recommended for small field dosimetry as their correction factors (KNR and KNCSF) was close to 1.0 for all small field sizes investigated and are mainly independent from the electron beam spot size.


2019 ◽  
Vol 25 (2) ◽  
pp. 101-110
Author(s):  
Itumeleng Setilo ◽  
Oluwaseyi Michael Oderinde ◽  
Freek Cp du Plessis

Abstract Introduction: Small fields photon dosimetry is associated with many problems. Using the right detector for measurement plays a fundamental role. This study investigated the measurement of relative output for small photon fields with different detectors. It was investigated for three-photon beam energies at SSDs of 90, 95, 100 and 110 cm. As a benchmark, the Monte Carlo simulation was done to calculate the relative output of these small photon beams for the dose in water. Materials and Methods: 6, 10 and 15 MV beams were delivered from a Synergy LINAC equipped with an Agility 160 multileaf collimator (MLC). A CC01 ion chamber, EFD-3G diode, PTW60019 microdiamond, EBT2 radiochromic film, and EDR2 radiographic film were used to measure the relative output of the linac. Measurements were taken in water for the CC01 ion chamber, EFD-3G diode, and the PTW60019. Films were measured in water equivalent RW3 phantom slabs. Measurements were made for 1 × 1, 2 × 2, 3 × 3, 4 × 4, 5 × 5 and a reference field of 10 × 10 cm2. Field sizes were defined at 100cm SSD. Relative output factors were also compared with Monte Carlo (MC) simulation of the LINAC and a water phantom model. The influence of voxel size was also investigated for relative output measurement. Results and Discussion: The relative output factor (ROF) increased with energy for all fields large enough to have lateral electronic equilibrium (LEE). This relation broke down as the field sizes decreased due to the onset of lateral electronic disequilibrium (LED). The high-density detector, PTW60019 gave the highest ROF for the different energies, with the less dense CC01 giving the lowest ROFs. Conclusion: These are results compared to MC simulation, higher density detectors give higher ROF values. Relative to water, the ROF measured with the air-chamber remained virtually unchanged. The ROFs, as measured in this study showed little variation due to increased SSDs. The effect of voxel size for the Monte Carlo calculations in water does not lead to significant ROF variation over the small fields studied.


Sign in / Sign up

Export Citation Format

Share Document