scholarly journals Propositional theories are strongly equivalent to logic programs

2007 ◽  
Vol 7 (6) ◽  
pp. 745-759 ◽  
Author(s):  
PEDRO CABALAR ◽  
PAOLO FERRARIS

AbstractThis paper presents a property of propositional theories under the answer sets semantics (called Equilibrium Logic for this general syntax): any theory can always be reexpressed as a strongly equivalent disjunctive logic program, possibly with negation in the head. We provide two different proofs for this result: one involving a syntactic transformation, and one that constructs a program starting from the countermodels of the theory in the intermediate logic of here-and-there.

2019 ◽  
Vol 19 (04) ◽  
pp. 603-628 ◽  
Author(s):  
FRANCESCO CALIMERI ◽  
SIMONA PERRI ◽  
JESSICA ZANGARI

AbstractAnswer Set Programming (ASP) is a purely declarative formalism developed in the field of logic programming and non-monotonic reasoning: computational problems are encoded by logic programs whose answer sets, corresponding to solutions, are computed by an ASP system. Different, semantically equivalent, programs can be defined for the same problem; however, performance of systems evaluating them might significantly vary. We propose an approach for automatically transforming an input logic program into an equivalent one that can be evaluated more efficiently. One can make use of existing tree-decomposition techniques for rewriting selected rules into a set of multiple ones; the idea is to guide and adaptively apply them on the basis of proper new heuristics, to obtain a smart rewriting algorithm to be integrated into an ASP system. The method is rather general: it can be adapted to any system and implement different preference policies. Furthermore, we define a set of new heuristics tailored at optimizing grounding, one of the main phases of the ASP computation; we use them in order to implement the approach into the ASP systemDLV, in particular into its grounding subsystemℐ-DLV, and carry out an extensive experimental activity for assessing the impact of the proposal.


2006 ◽  
Vol 6 (1-2) ◽  
pp. 169-212 ◽  
Author(s):  
STEFANIA COSTANTINI

In this paper we analyze the relationship between cyclic definitions and consistency in Gelfond-Lifschitz's answer sets semantics (originally defined as ‘stable model semantics’). This paper introduces a fundamental result, which is relevant for Answer Set programming, and planning. For the first time since the definition of the stable model semantics, the class of logic programs for which a stable model exists is given a syntactic characterization. This condition may have a practical importance both for defining new algorithms for checking consistency and computing answer sets, and for improving the existing systems. The approach of this paper is to introduce a new canonical form (to which any logic program can be reduced to), to focus the attention on cyclic dependencies. The technical result is then given in terms of programs in canonical form (canonical programs), without loss of generality: the stable models of any general logic program coincide (up to the language) to those of the corresponding canonical program. The result is based on identifying the cycles contained in the program, showing that stable models of the overall program are composed of stable models of suitable sub-programs, corresponding to the cycles, and on defining the Cycle Graph. Each vertex of this graph corresponds to one cycle, and each edge corresponds to one handle, which is a literal containing an atom that, occurring in both cycles, actually determines a connection between them. In fact, the truth value of the handle in the cycle where it appears as the head of a rule, influences the truth value of the atoms of the cycle(s) where it occurs in the body. We can therefore introduce the concept of a handle path, connecting different cycles. Cycles can be even, if they consist of an even number of rules, or vice versa they can be odd. Problems for consistency, as it is well-known, originate in the odd cycles. If for every odd cycle we can find a handle path with certain properties, then the existence of stable model is guaranteed. We will show that based on this results new classes of consistent programs can be defined, and that cycles and cycle graphs can be generalized to components and component graphs.


2010 ◽  
Vol 10 (4-6) ◽  
pp. 565-580 ◽  
Author(s):  
JAMES P. DELGRANDE

AbstractAn approach to the revision of logic programs under the answer set semantics is presented. For programs P and Q, the goal is to determine the answer sets that correspond to the revision of P by Q, denoted P * Q. A fundamental principle of classical (AGM) revision, and the one that guides the approach here, is the success postulate. In AGM revision, this stipulates that α ∈ K * α. By analogy with the success postulate, for programs P and Q, this means that the answer sets of Q will in some sense be contained in those of P * Q. The essential idea is that for P * Q, a three-valued answer set for Q, consisting of positive and negative literals, is first determined. The positive literals constitute a regular answer set, while the negated literals make up a minimal set of naf literals required to produce the answer set from Q. These literals are propagated to the program P, along with those rules of Q that are not decided by these literals. The approach differs from work in update logic programs in two main respects. First, we ensure that the revising logic program has higher priority, and so we satisfy the success postulate; second, for the preference implicit in a revision P * Q, the program Q as a whole takes precedence over P, unlike update logic programs, since answer sets of Q are propagated to P. We show that a core group of the AGM postulates are satisfied, as are the postulates that have been proposed for update logic programs.


2019 ◽  
Vol 19 (5-6) ◽  
pp. 891-907
Author(s):  
MARIO ALVIANO ◽  
CARMINE DODARO ◽  
JOHANNES K. FICHTE ◽  
MARKUS HECHER ◽  
TOBIAS PHILIPP ◽  
...  

AbstractAnswer Set Programming (ASP) solvers are highly-tuned and complex procedures that implicitly solve the consistency problem, i.e., deciding whether a logic program admits an answer set. Verifying whether a claimed answer set is formally a correct answer set of the program can be decided in polynomial time for (normal) programs. However, it is far from immediate to verify whether a program that is claimed to be inconsistent, indeed does not admit any answer sets. In this paper, we address this problem and develop the new proof format ASP-DRUPE for propositional, disjunctive logic programs, including weight and choice rules. ASP-DRUPE is based on the Reverse Unit Propagation (RUP) format designed for Boolean satisfiability. We establish correctness of ASP-DRUPE and discuss how to integrate it into modern ASP solvers. Later, we provide an implementation of ASP-DRUPE into the wasp solver for normal logic programs.


2011 ◽  
Vol 13 (1) ◽  
pp. 33-70 ◽  
Author(s):  
JUAN CARLOS NIEVES ◽  
MAURICIO OSORIO ◽  
ULISES CORTÉS

AbstractIn this paper, a possibilistic disjunctive logic programming approach for modeling uncertain, incomplete, and inconsistent information is defined. This approach introduces the use of possibilistic disjunctive clauses, which are able to capture incomplete information and states of a knowledge base at the same time. By considering a possibilistic logic program as a possibilistic logic theory, a construction of a possibilistic logic programming semantic based on answer sets and the proof theory of possibilistic logic is defined. It shows that this possibilistic semantics for disjunctive logic programs can be characterized by a fixed-point operator. It is also shown that the suggested possibilistic semantics can be computed by a resolution algorithm and the consideration of optimal refutations from a possibilistic logic theory. In order to manage inconsistent possibilistic logic programs, a preference criterion between inconsistent possibilistic models is defined. In addition, the approach of cuts for restoring consistency of an inconsistent possibilistic knowledge base is adopted. The approach is illustrated in a medical scenario.


AI Magazine ◽  
2016 ◽  
Vol 37 (3) ◽  
pp. 33-44 ◽  
Author(s):  
Martin Gebser ◽  
Torsten Schaub

Answer set programming (ASP) has emerged as an approach to declarative problem solving based on the stable model semantics for logic programs. The basic idea is to represent a computational problem by a logic program, formulating constraints in terms of rules, such that its answer sets correspond to problem solutions. To this end, ASP combines an expressive language for high-level modeling with powerful low-level reasoning capacities, provided by off-the-shelf tools. Compact problem representations take advantage of genuine modeling features of ASP, including (first-order) variables, negation by default, and recursion. In this article, we demonstrate the ASP methodology on two example scenarios, illustrating basic as well as advanced modeling and solving concepts. We also discuss mechanisms to represent and implement extended kinds of preferences and optimization. An overview of further available extensions concludes the article.


2003 ◽  
Vol 3 (2) ◽  
pp. 129-187 ◽  
Author(s):  
JAMES P. DELGRANDE ◽  
TORSTEN SCHAUB ◽  
HANS TOMPITS

We introduce a methodology and framework for expressing general preference information in logic programming under the answer set semantics. An ordered logic program is an extended logic program in which rules are named by unique terms, and in which preferences among rules are given by a set of atoms of form s [pr ] t where s and t are names. An ordered logic program is transformed into a second, regular, extended logic program wherein the preferences are respected, in that the answer sets obtained in the transformed program correspond with the preferred answer sets of the original program. Our approach allows the specification of dynamic orderings, in which preferences can appear arbitrarily within a program. Static orderings (in which preferences are external to a logic program) are a trivial restriction of the general dynamic case. First, we develop a specific approach to reasoning with preferences, wherein the preference ordering specifies the order in which rules are to be applied. We then demonstrate the wide range of applicability of our framework by showing how other approaches, among them that of Brewka and Eiter, can be captured within our framework. Since the result of each of these transformations is an extended logic program, we can make use of existing implementations, such as dlv and smodels. To this end, we have developed a publicly available compiler as a front-end for these programming systems.


2007 ◽  
Vol 7 (6) ◽  
pp. 697-744 ◽  
Author(s):  
TOMI JANHUNEN ◽  
EMILIA OIKARINEN

AbstractIn answer set programming (ASP), a problem at hand is solved by (i) writing a logic program whose answer sets correspond to the solutions of the problem, and by (ii) computing the answer sets of the program using ananswer set solveras a search engine. Typically, a programmer creates a series of gradually improving logic programs for a particular problem when optimizing program length and execution time on a particular solver. This leads the programmer to a meta-level problem of ensuring that the programs are equivalent, i.e., they give rise to the same answer sets. To ease answer set programming at methodological level, we propose a translation-based method for verifying the equivalence of logic programs. The basic idea is to translate logic programsPandQunder consideration into a single logic program EQT(P,Q) whose answer sets (if such exist) yield counter-examples to the equivalence ofPandQ. The method is developed here in a slightly more general setting by taking thevisibilityof atoms properly into account when comparing answer sets. The translation-based approach presented in the paper has been implemented as a translator calledlpeqthat enables the verification of weak equivalence within thesmodelssystem using the same search engine as for the search of models. Our experiments withlpeqandsmodelssuggest that establishing the equivalence of logic programs in this way is in certain cases much faster than naive cross-checking of answer sets.


2020 ◽  
Vol 34 (03) ◽  
pp. 2917-2924
Author(s):  
Sanja Lukumbuzya ◽  
Magdalena Ortiz ◽  
Mantas Šimkus

We introduce resilient logic programs (RLPs) that couple a non-monotonic logic program and a first-order (FO) theory or description logic (DL) ontology. Unlike previous hybrid languages, where the interaction between the program and the theory is limited to consistency or query entailment tests, in RLPs answer sets must be ‘resilient’ to the models of the theory, allowing non-output predicates of the program to respond differently to different models. RLPs can elegantly express ∃∀∃-QBFs, disjunctive ASP, and configuration problems under incompleteness of information. RLPs are decidable when a couple of natural assumptions are made: (i) satisfiability of FO theories in the presence of closed predicates is decidable, and (ii) rules are safe in the style of the well-known DL-safeness. We further show that a large fragment of such RLPs can be translated into standard (disjunctive) ASP, for which efficient implementations exist. For RLPs with theories expressed in DLs, we use a novel relaxation of safeness that safeguards rules via predicates whose extensions can be inferred to have a finite bound. We present several complexity results for the case where ontologies are written in some standard DLs.


2007 ◽  
Vol 29 ◽  
pp. 353-389 ◽  
Author(s):  
T. C. Son ◽  
E. Pontelli ◽  
P. H. Tu

In this paper, we present two alternative approaches to defining answer sets for logic programs with arbitrary types of abstract constraint atoms (c-atoms). These approaches generalize the fixpoint-based and the level mapping based answer set semantics of normal logic programs to the case of logic programs with arbitrary types of c-atoms. The results are four different answer set definitions which are equivalent when applied to normal logic programs. The standard fixpoint-based semantics of logic programs is generalized in two directions, called answer set by reduct and answer set by complement. These definitions, which differ from each other in the treatment of negation-as-failure (naf) atoms, make use of an immediate consequence operator to perform answer set checking, whose definition relies on the notion of conditional satisfaction of c-atoms w.r.t. a pair of interpretations. The other two definitions, called strongly and weakly well-supported models, are generalizations of the notion of well-supported models of normal logic programs to the case of programs with c-atoms. As for the case of fixpoint-based semantics, the difference between these two definitions is rooted in the treatment of naf atoms. We prove that answer sets by reduct (resp. by complement) are equivalent to weakly (resp. strongly) well-supported models of a program, thus generalizing the theorem on the correspondence between stable models and well-supported models of a normal logic program to the class of programs with c-atoms. We show that the newly defined semantics coincide with previously introduced semantics for logic programs with monotone c-atoms, and they extend the original answer set semantics of normal logic programs. We also study some properties of answer sets of programs with c-atoms, and relate our definitions to several semantics for logic programs with aggregates presented in the literature.


Sign in / Sign up

Export Citation Format

Share Document