scholarly journals AX–SCHANUEL CONDITION IN ARBITRARY CHARACTERISTIC

2017 ◽  
Vol 18 (06) ◽  
pp. 1157-1213
Author(s):  
Piotr Kowalski

We prove a positive characteristic version of Ax’s theorem on the intersection of an algebraic subvariety and an analytic subgroup of an algebraic group [Ax, Some topics in differential algebraic geometry. I. Analytic subgroups of algebraic groups, Amer. J. Math. 94 (1972), 1195–1204]. Our result is stated in a more general context of a formal map between an algebraic variety and an algebraic group. We derive transcendence results of Ax–Schanuel type.

Mathematics ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 1032
Author(s):  
Raúl Durán Díaz ◽  
Víctor Gayoso Martínez ◽  
Luis Hernández Encinas ◽  
Jaime Muñoz Masqué

A method is presented that allows one to compute the maximum number of functionally-independent invariant functions under the action of a linear algebraic group as long as its Lie algebra admits a basis of square-zero matrices even on a field of positive characteristic. The class of such Lie algebras is studied in the framework of the classical Lie algebras of arbitrary characteristic. Some examples and applications are also given.


2014 ◽  
Vol 14 (1) ◽  
pp. 185-220 ◽  
Author(s):  
Abe Noriyuki ◽  
Kaneda Masaharu

AbstractWe show that the modules for the Frobenius kernel of a reductive algebraic group over an algebraically closed field of positive characteristic $p$ induced from the $p$-regular blocks of its parabolic subgroups can be $\mathbb{Z}$-graded. In particular, we obtain that the modules induced from the simple modules of $p$-regular highest weights are rigid and determine their Loewy series, assuming the Lusztig conjecture on the irreducible characters for the reductive algebraic groups, which is now a theorem for large $p$. We say that a module is rigid if and only if it admits a unique filtration of minimal length with each subquotient semisimple, in which case the filtration is called the Loewy series.


2002 ◽  
Vol 133 (2) ◽  
pp. 223-233 ◽  
Author(s):  
A. SILVERBERG ◽  
YU. G. ZARHIN

Every isogeny class over an algebraically closed field contains a principally polarized abelian variety ([10, corollary 1 to theorem 4 in section 23]). Howe ([3]; see also [4]) gave examples of isogeny classes of abelian varieties over finite fields with no principal polarizations (but not with the degrees of all the polarizations divisible by a given non-zero integer, as in Theorem 1·1 below). In [17] we obtained, for all odd primes [lscr ], isogeny classes of abelian varieties in positive characteristic, all of whose polarizations have degree divisible by [lscr ]2. We gave results in the more general context of invertible sheaves; see also Theorems 6·1 and 5·2 below. Our results gave the first examples for which all the polarizations of the abelian varieties in an isogeny class have degree divisible by a given prime. Inspired by our results in [17], Howe [5] recently obtained, for all odd primes [lscr ], examples of isogeny classes of abelian varieties over fields of arbitrary characteristic different from [lscr ] (including number fields), all of whose polarizations have degree divisible by [lscr ]2.


1953 ◽  
Vol 49 (3) ◽  
pp. 386-396 ◽  
Author(s):  
D. G. Northcott

The recent progress of modern algebra in analysing, from the algebraic standpoint, the foundations of algebraic geometry, has been marked by the rapid development of what may be called ‘analytic algebra’. By this we mean the topological theories of Noetherian rings that arise when one uses ideals to define neighbourhoods; this includes, for instance, the theory of power-series rings and of local rings. In the present paper some applications are made of this kind of algebra to some problems connected with the notion of a branch of a variety at a point.


2011 ◽  
Vol 21 (04) ◽  
pp. 595-614 ◽  
Author(s):  
S. LIRIANO ◽  
S. MAJEWICZ

If G is a finitely generated group and A is an algebraic group, then RA(G) = Hom (G, A) is an algebraic variety. Define the "dimension sequence" of G over A as Pd(RA(G)) = (Nd(RA(G)), …, N0(RA(G))), where Ni(RA(G)) is the number of irreducible components of RA(G) of dimension i (0 ≤ i ≤ d) and d = Dim (RA(G)). We use this invariant in the study of groups and deduce various results. For instance, we prove the following: Theorem A.Let w be a nontrivial word in the commutator subgroup ofFn = 〈x1, …, xn〉, and letG = 〈x1, …, xn; w = 1〉. IfRSL(2, ℂ)(G)is an irreducible variety andV-1 = {ρ | ρ ∈ RSL(2, ℂ)(Fn), ρ(w) = -I} ≠ ∅, thenPd(RSL(2, ℂ)(G)) ≠ Pd(RPSL(2, ℂ)(G)). Theorem B.Let w be a nontrivial word in the free group on{x1, …, xn}with even exponent sum on each generator and exponent sum not equal to zero on at least one generator. SupposeG = 〈x1, …, xn; w = 1〉. IfRSL(2, ℂ)(G)is an irreducible variety, thenPd(RSL(2, ℂ)(G)) ≠ Pd(RPSL(2, ℂ)(G)). We also show that if G = 〈x1, . ., xn, y; W = yp〉, where p ≥ 1 and W is a word in Fn = 〈x1, …, xn〉, and A = PSL(2, ℂ), then Dim (RA(G)) = Max {3n, Dim (RA(G′)) +2 } ≤ 3n + 1 for G′ = 〈x1, …, xn; W = 1〉. Another one of our results is that if G is a torus knot group with presentation 〈x, y; xp = yt〉 then Pd(RSL(2, ℂ)(G))≠Pd(RPSL(2, ℂ)(G)).


1978 ◽  
Vol 71 ◽  
pp. 169-179 ◽  
Author(s):  
Lucian Bădescu

Let K be an algebraically closed field of arbitrary characteristic. The term “variety” always means here an irreducible algebraic variety over K. The notations and the terminology are borrowed in general from EGA [4].


2008 ◽  
Vol 191 ◽  
pp. 111-134 ◽  
Author(s):  
Christian Liedtke

AbstractWe establish Noether’s inequality for surfaces of general type in positive characteristic. Then we extend Enriques’ and Horikawa’s classification of surfaces on the Noether line, the so-called Horikawa surfaces. We construct examples for all possible numerical invariants and in arbitrary characteristic, where we need foliations and deformation techniques to handle characteristic 2. Finally, we show that Horikawa surfaces lift to characteristic zero.


1991 ◽  
Vol 122 ◽  
pp. 161-179 ◽  
Author(s):  
Yoshifumi Takeda

Let f: V → C be a fibration from a smooth projective surface onto a smooth projective curve over an algebraically closed field k. In the case of characteristic zero, almost all fibres of f are nonsingular. In the case of positive characteristic, it is, however, known that there exist fibrations whose general fibres have singularities. Moreover, it seems that such fibrations often have pathological phenomena of algebraic geometry in positive characteristic (see M. Raynaud [7], W. Lang [4]).


Sign in / Sign up

Export Citation Format

Share Document