Polynomials and Reciprocals of Eisenstein series

Author(s):  
Bernhard Heim ◽  
Markus Neuhauser

Hardy and Ramanujan introduced the Circle Method to study the Fourier expansion of certain meromorphic modular forms on the upper complex half-plane. These led to asymptotic results for the partition numbers and proven and unproven formulas for the coefficients of the reciprocals of Eisenstein series [Formula: see text], especially of weight 4. Berndt et al. finally proved them all. Recently, Bringmann and Kane generalized Petersson’s approach via Poincaré series, to handle the general case. We introduce a third approach. We attach recursively defined polynomials to reciprocals of Eisenstein series. This provides easy access to the signs of the Fourier coefficients of reciprocals of Eisenstein series, sheds some light on reciprocals of [Formula: see text] of general weight, and provides some upper and lower bounds for their growth.


Author(s):  
Aaron Pollack

Suppose that $G$ is a simple reductive group over $\mathbf{Q}$ , with an exceptional Dynkin type and with $G(\mathbf{R})$ quaternionic (in the sense of Gross–Wallach). In a previous paper, we gave an explicit form of the Fourier expansion of modular forms on $G$ along the unipotent radical of the Heisenberg parabolic. In this paper, we give the Fourier expansion of the minimal modular form $\unicode[STIX]{x1D703}_{Gan}$ on quaternionic $E_{8}$ and some applications. The $Sym^{8}(V_{2})$ -valued automorphic function $\unicode[STIX]{x1D703}_{Gan}$ is a weight 4, level one modular form on $E_{8}$ , which has been studied by Gan. The applications we give are the construction of special modular forms on quaternionic $E_{7},E_{6}$ and $G_{2}$ . We also discuss a family of degenerate Heisenberg Eisenstein series on the groups $G$ , which may be thought of as an analogue to the quaternionic exceptional groups of the holomorphic Siegel Eisenstein series on the groups $\operatorname{GSp}_{2n}$ .



1984 ◽  
Vol 95 ◽  
pp. 73-84 ◽  
Author(s):  
Yoshiyuki Kitaoka

We are concerned with Dirichlet series which appear in the Fourier expansion of the non-analytic Eisenstein series on the Siegel upper half space Hm of degree m. In the case of m = 2 Kaufhold [1] evaluated them. Here we treat the general cases by a different method.



2016 ◽  
Vol 12 (03) ◽  
pp. 691-723 ◽  
Author(s):  
Ren-He Su

In 1975, Cohen constructed a kind of one-variable modular forms of half-integral weight, say [Formula: see text], whose [Formula: see text]th Fourier coefficient only occurs when [Formula: see text] is congruent to 0 or 1 modulo 4. The space of modular forms whose Fourier coefficients have the above property is called Kohnen plus space, initially introduced by Kohnen in 1980. Recently, Hiraga and Ikeda generalized the plus space to the spaces for half-integral weight Hilbert modular forms with respect to general totally real number fields. The [Formula: see text]th Fourier coefficients [Formula: see text] of a Hilbert modular form of parallel weight [Formula: see text] lying in the generalized Kohnen plus space does not vanish only if [Formula: see text] is congruent to a square modulo 4. In this paper, we use an adelic way to construct Eisenstein series of parallel half-integral weight belonging to the generalized Kohnen plus spaces and give an explicit form for their Fourier coefficients. These series give a generalization of the one introduced by Cohen. Moreover, we show that the Kohnen plus space is generated by the cusp forms and the Eisenstein series we constructed as a vector space over [Formula: see text].



1999 ◽  
Vol 41 (1) ◽  
pp. 141-144
Author(s):  
P. GUERZHOY

The notion of quadratic congruences was introduced in the recently published paper [A. Balog, H. Darmon and K. Ono, Congruences for Fourier coefficients of half-integral weight modular forms and special values of L-functions, in Analytic Number Theory, Vol. 1, Progr. Math.138 (Birkhäuser, Boston, 1996), 105–128.]. In this note we present different, somewhat more conceptual proofs of several results from that paper. Our method allows us to refine the notion and to generalize the results quoted. Here we deal only with the quadratic congruences for Cohen–Eisenstein series. Similar phenomena exist for cusp forms of half-integral weight as well; however, as one would expect, in the case of Eisenstein series the argument is much simpler. In particular, we do not make use of techniques other than p-adic Mazur measure, whereas the consideration of cusp forms of half-integral weight involves a much more sophisticated construction. Moreover, in the case of Cohen–Eisenstein series we are able to obtain a full and exhaustive result. For these reasons we present the argument here.



2009 ◽  
Vol 05 (01) ◽  
pp. 153-160 ◽  
Author(s):  
WISSAM RAJI

The Fourier coefficients of classical modular forms of negative weights have been determined for the case for which F(τ) belongs to a subgroup of the full modular group [9]. In this paper, we determine the Fourier coefficients of generalized modular forms of negative weights using the circle method.



2014 ◽  
Vol 26 (6) ◽  
Author(s):  
Roland Matthes ◽  
Yoshinori Mizuno

AbstractWe study some arithmetics of Hermitian modular forms of degree two by applying the spectral theory on 3-dimensional hyperbolic space. This paper presents three main results: (1) a 3-dimensional analogue of Katok–Sarnak's correspondence, (2) an analytic proof of a Hermitian analogue of the Saito–Kurokawa lift by means of a converse theorem, (3) an explicit formula for the Fourier coefficients of a certain Hermitian Eisenstein series.



1986 ◽  
Vol 102 ◽  
pp. 51-77 ◽  
Author(s):  
Yoshio Tanigawa

In [8], H. Maass introduced the ‘Spezialschar’ which is now called the Maass space. It is defined by the relation of the Fourier coefficients of modular forms as follows. Let f be a Siegel modular form on Sp(2,Z) of weight k, and let be its Fourier expansion, where . Then f belongs to the Maass space if and only if



2010 ◽  
Vol 06 (01) ◽  
pp. 69-87 ◽  
Author(s):  
ALISON MILLER ◽  
AARON PIXTON

We extend results of Bringmann and Ono that relate certain generalized traces of Maass–Poincaré series to Fourier coefficients of modular forms of half-integral weight. By specializing to cases in which these traces are usual traces of algebraic numbers, we generalize results of Zagier describing arithmetic traces associated to modular forms. We define correspondences [Formula: see text] and [Formula: see text]. We show that if f is a modular form of non-positive weight 2 - 2 λ and odd level N, holomorphic away from the cusp at infinity, then the traces of values at Heegner points of a certain iterated non-holomorphic derivative of f are equal to Fourier coefficients of the half-integral weight modular forms [Formula: see text].



2021 ◽  
pp. 1-20
Author(s):  
K. PUSHPA ◽  
K. R. VASUKI

Abstract The article focuses on the evaluation of convolution sums $${W_k}(n): = \mathop \sum \nolimits_{_{m < {n \over k}}} \sigma (m)\sigma (n - km)$$ involving the sum of divisor function $$\sigma (n)$$ for k =21, 33, and 35. In this article, our aim is to obtain certain Eisenstein series of level 21 and use them to evaluate the convolution sums for level 21. We also make use of the existing Eisenstein series identities for level 33 and 35 in evaluating the convolution sums for level 33 and 35. Most of the convolution sums were evaluated using the theory of modular forms, whereas we have devised a technique which is free from the theory of modular forms. As an application, we determine a formula for the number of representations of a positive integer n by the octonary quadratic form $$(x_1^2 + {x_1}{x_2} + ax_2^2 + x_3^2 + {x_3}{x_4} + ax_4^2) + b(x_5^2 + {x_5}{x_6} + ax_6^2 + x_7^2 + {x_7}{x_8} + ax_8^2)$$ , for (a, b)=(1, 7), (1, 11), (2, 3), and (2, 5).



Sign in / Sign up

Export Citation Format

Share Document