Molecular adaptation of the chloroplast matK gene in Nymphaea tetragona, a critically rare and endangered plant of India

2011 ◽  
Vol 9 (2) ◽  
pp. 193-196 ◽  
Author(s):  
Jeremy Dkhar ◽  
Suman Kumaria ◽  
Pramod Tandon

Sustainable utilization of plant genetic resources for food and agriculture has been increasingly discussed at both national and international forums. Besides exploitation, conservation of plant genetic resources has become an integral part of these discussions. Conservation aims at maintaining the diversity of living organisms, their habitat and the interrelationship between organisms and their environment. For achieving such goals, appropriate conservation strategies have to be adopted. Determining the genetic makeup of a particular plant species is of critical importance when planning a suitable conservation strategy. In this study, we sequenced the chloroplast trnK intron, matK and rbcL gene aimed at understanding the rarity of Nymphaea tetragona, a critically rare and endangered plant of India found at only one location. We extended our investigation to other Nymphaea species such as N. nouchali, N. pubescens and N. rubra that are commonly available throughout India. Interestingly, matK gene of N. tetragona revealed high number of non-synonymous substitutions. Molecular evolutionary analysis indicated that three of these sites may be under mild selective pressures. Such adaptive changes at the DNA and protein sequence level of matK gene may have been associated with the colonization of N. tetragona, suggesting that it could have migrated from China.

2021 ◽  
pp. 459-468
Author(s):  
Chikelu Mba ◽  
Hans Dreyer

Abstract The 50% increase in food production required to feed an ever-growing global population, and which must be attained under dire climate change scenarios and other constraints, will not be attained with a 'business as usual' mindset. For crops, the current cultivars will have to be replaced by ones that are more nutritious, stress tolerant and input-use efficient and that would produce higher yields with less external input. Generating such varieties requires significant efficiency enhancements to the conservation and characterization of plant genetic resources for food and agriculture and their use in plant breeding. Genome editing holds great promise in this regard. Its rapid adoption as a relatively cheap and rapid means to generate precise and predictable heritable variations and its universal applicability mirror the developments of the closely associated gene drive. Large amounts of digital sequence data are also increasingly available, while the field of synthetic biology has been expanding rapidly. This all holds great promise for improving and broadening the genetic base of crop varieties for the enhancement of crop productivity without damaging the environment. However, the pace of the scientific and technological developments for these methods has far outstripped that of the requisite policy regimes. The demonstrable potentials notwithstanding, the developments have not been universally accepted. The ongoing debates include whether the products of genome editing, with or without gene drive, should be considered living modified organisms and, if so, subject to the international framework, the Cartagena Protocol on Biosafety to the Convention on Biological Diversity. Another debate is whether digital sequence information should be subject to some access- and-benefit sharing regime, considering that, with the power of synthetic biology, products previously harnessed only from living organisms can now be produced in the laboratory once the DNA sequence is available. There are also debates about ethics. In order to avoid the mistakes of the past, a call is made for evidence-based multi-stakeholder (including especially intergovernmental) dialogues on the safety, fairness and ethics of the use of these emerging biotechnologies, as the stakes are extremely high.


2016 ◽  
Vol 8 (6) ◽  
pp. 65-79
Author(s):  
Atieno Otieno Gloria ◽  
Wasswa Mulumba John ◽  
Seyoum Wedajoo Aseffa ◽  
Jae Lee Myung ◽  
Kiwuka Catherine ◽  
...  

Author(s):  
Chiara M. Posadinu ◽  
Monica Rodriguez ◽  
Fabio Madau ◽  
Giovanna Attene

Abstract The valorization of plant genetic resources and their direct use in local markets can make a significant contribution to the preservation of agrobiodiversity, while also contributing to the sustainability of rural communities. Indeed, plant genetic resources are a precious source of genes, and they represent an important crop heritage for the quality and sensory characteristics that are required by both farmers and consumers. However, an efficient strategy of agrobiodiversity conservation is strictly connected to product marketability and to consumer preferences. In the present study, choice experiments that involved 920 consumers were carried out to determine their willingness to pay for ancient local tomato varieties (landraces) rather than commercial varieties based on their preferences, and to determine how much they valued these products. The results obtained indicate that consumers are willing to pay premium prices for ancient local tomato varieties (an additional €0.90 kg−1), thus demonstrating their increasing attention to sustainable food and the willingness to contribute to agrobiodiversity conservation and enhancement. These results provide the basis for planning strategies and programs to support the cultivation of these landraces and the development of regional and national markets to acknowledge their characteristics, which will considerably increase the effectiveness and efficiency of conservation strategies.


2011 ◽  
Vol 47 (Special Issue) ◽  
pp. S43-S48 ◽  
Author(s):  
A. Börner ◽  
K. Neumann ◽  
B. Kobiljski

It is estimated that world-wide existing germplasm collections contain about 7.5 million accessions of plant genetic resources for food and agriculture. Wheat (Triticum and Aegilops) represents the biggest group comprising 900 000 accessions. However, such a huge number of accessions is hindering a successful exploitation of the germplasm. The creation of core collections representing a wide spectrum of the genetic variation of the whole assembly may help to overcome the problem. Here we demonstrate the successful utilisation of such a core collection for the identification and molecular mapping of genes (Quantitative Trait Loci) determining the agronomic traits flowering time and grain yield, exploiting a marker-trait-association based technique. Significant marker-trait associations were obtained and are presented. The intrachromosomal location of many of these associations coincided with those of already identified major genes or quantitative trait loci, but others were detected in regions where no known genes have been located to date.


2006 ◽  
Vol 4 (1) ◽  
pp. 54-63 ◽  
Author(s):  
Niels P. Louwaars ◽  
Eva Thörn ◽  
José Esquinas-Alcázar ◽  
Shumin Wang ◽  
Abebe Demissie ◽  
...  

Applied genetics combined with practical plant breeding is a powerful tool in agricultural development and for food security. The Green Revolution spurred the world's potential to meet its food, feed and fibre needs at a time when vast regions were notoriously food-insecure. Subsequent adaptations of such strategies, from the late 1980s onwards, in order to develop new plant varieties in a more participatory way, have strengthened the focus on applying technology to farmers' diverse needs, feeding research results into a variety of seed systems. During these developments, there were no major legal impediments to the acquisition of either local or formal knowledge or of the building blocks of plant breeding: genetic resources. The emergence of molecular biology in plant science is creating a wealth of opportunities, both to understand better the limitations of crop production and to use a much wider array of genetic diversity in crop improvement. This ‘Gene Revolution’ needs to incorporate the lessons from the Green Revolution in order to reach its target groups. However, the policy environment has changed. Access to technologies is complicated by the spread of private rights (intellectual property rights), and access to genetic resources by new national access laws. Policies on access to genetic resources have changed from the concept of the ‘Heritage of Mankind’ for use for the benefit of all mankind to ‘National Sovereignty’, based on the Convention on Biological Diversity, for negotiated benefit-sharing between a provider and a user. The Generation Challenge Programme intends to use genomic techniques to identify and use characteristics that are of value to the resource-poor, and is looking for ways to promote freedom-to-operate for plant breeding technologies and materials. Biodiversity provides the basis for the effective use of these genomic techniques. National access regulations usually apply to all biodiversity indiscriminately and may cause obstacles or delays in the use of genetic resources in agriculture. Different policies are being developed in different regions. Some emphasize benefit-sharing, and limit access in order to implement this (the ‘African Model Law’), while others, in recognition of countries' interdependence, provide for facilitated access to all genetic resources under the jurisdiction of countries in the region (the Nordic Region). There are good reasons why the use of agricultural biodiversity needs to be regulated differently from industrial uses of biodiversity. The International Treaty on Plant Genetic Resources for Food and Agriculture, which entered into force in 2004, provides for facilitated access to agricultural genetic resources, at least for the crops that are included in the Treaty's ‘Multilateral System of Access and Benefit-sharing’. Ratification of the Treaty is proceeding apace, and negotiations have entered a critical stage in the development of practical instruments for its implementation. Although the scope of the Treaty is all plant genetic resources for food and agriculture, there are important crops that are not covered by its Multilateral System. Humanitarian licences are being used to provide access for the poor to protected technologies: countries may need to create such a general humanitarian access regime, to ensure the poor have the access they need to agricultural genetic resources.


Sign in / Sign up

Export Citation Format

Share Document