Molecular marker information from de novo assembled transcriptomes of chilli pepper (Capsicum annuum L.) varieties based on next-generation sequencing technology

2014 ◽  
Vol 12 (S1) ◽  
pp. S83-S86 ◽  
Author(s):  
Yul-Kyun Ahn ◽  
Swati Tripathi ◽  
Young-Il Cho ◽  
Jeong-Ho Kim ◽  
Hye-Eun Lee ◽  
...  

Next-generation sequencing technique has been known as a useful tool for de novo transcriptome assembly, functional annotation of genes and identification of molecular markers. This study was carried out to mine molecular markers from de novo assembled transcriptomes of four chilli pepper varieties, the highly pungent ‘Saengryeg 211’ and non-pungent ‘Saengryeg 213’ and variably pigmented ‘Mandarin’ and ‘Blackcluster’. Pyrosequencing of the complementary DNA library resulted in 361,671, 274,269, 279,221, and 316,357 raw reads, which were assembled in 23,607, 19,894, 18,340 and 20,357 contigs, for the four varieties, respectively. Detailed sequence variant analysis identified numerous potential single-nucleotide polymorphisms (SNPs) and simple sequence repeats (SSRs) for all the varieties for which the primers were designed. The transcriptome information and SNP/SSR markers generated in this study provide valuable resources for high-density molecular genetic mapping in chilli pepper and Quantitative trait loci analysis related to fruit qualities. These markers for pepper will be highly valuable for marker-assisted breeding and other genetic studies.

2010 ◽  
Vol 9 (9) ◽  
pp. 1300-1310 ◽  
Author(s):  
Minou Nowrousian

ABSTRACT Over the past 5 years, large-scale sequencing has been revolutionized by the development of several so-called next-generation sequencing (NGS) technologies. These have drastically increased the number of bases obtained per sequencing run while at the same time decreasing the costs per base. Compared to Sanger sequencing, NGS technologies yield shorter read lengths; however, despite this drawback, they have greatly facilitated genome sequencing, first for prokaryotic genomes and within the last year also for eukaryotic ones. This advance was possible due to a concomitant development of software that allows the de novo assembly of draft genomes from large numbers of short reads. In addition, NGS can be used for metagenomics studies as well as for the detection of sequence variations within individual genomes, e.g., single-nucleotide polymorphisms (SNPs), insertions/deletions (indels), or structural variants. Furthermore, NGS technologies have quickly been adopted for other high-throughput studies that were previously performed mostly by hybridization-based methods like microarrays. This includes the use of NGS for transcriptomics (RNA-seq) or the genome-wide analysis of DNA/protein interactions (ChIP-seq). This review provides an overview of NGS technologies that are currently available and the bioinformatics analyses that are necessary to obtain information from the flood of sequencing data as well as applications of NGS to address biological questions in eukaryotic microorganisms.


2020 ◽  
Vol 15 ◽  
Author(s):  
Zheng Jiang ◽  
Hui Liu ◽  
Siwen Zhang ◽  
Jia Liu ◽  
Weitao Wang ◽  
...  

Background: Microsatellite instability (MSI) is a prognostic biomarker used to guide medication selection in multiple cancers, such as colorectal cancer. Traditional PCR with capillary electrophoresis and next-generation sequencing using paired tumor tissue and leukocyte samples are the main approaches for MSI detection due to their high sensitivity and specificity. Currently, patient tissue samples are obtained through puncture or surgery, which causes injury and risk of concurrent disease, further illustrating the need for MSI detection by liquid biopsy. Methods: We propose an analytic method using paired plasma/leukocyte samples and MSI detection using next-generation sequencing technology. Based on the theoretical progress of oncogenesis, we hypothesized that the microsatellite site length in plasma equals the combination of the distribution of tumor tissue and leukocytes. Thus, we defined a window-judgement method to identify whether biomarkers were stable. Results: Compared to traditional PCR as the standard, we evaluated three methods in 20 samples (MSI-H:3/MSS:17): peak shifting method using tissue vs. leukocytes, peak shifting method using plasma vs. leukocytes, and our method using plasma vs. leukocytes. Compared to traditional PCR, we observed a sensitivity of 100%, 0%, and 100%, and a specificity of 100.00%, 94.12%, and 88.24%, respectively. Conclusion: Our method has the advantage of possibly detecting MSI in a liquid biopsy and provides a novel direction for future studies to increase the specificity of the method.


Author(s):  
Takuya Shimizu ◽  
Tadakazu Kondo ◽  
Yasuhito Nannya ◽  
Mizuki Watanabe ◽  
Toshio Kitawaki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document