scholarly journals Population III.1 stars: formation, feedback and evolution of the IMF

2008 ◽  
Vol 4 (S255) ◽  
pp. 24-32 ◽  
Author(s):  
Jonathan C. Tan

AbstractI discuss current theoretical expectations of how primordial, Pop III.1 stars form. Lack of direct observational constraints makes this a challenging task. In particular predicting the mass of these stars requires solving a series of problems, which all affect, perhaps drastically, the final outcome. While there is general agreement on the initial conditions, H2-cooled gas at the center of dark matter minihalos, the subsequent evolution is more uncertain. In particular, I describe the potential effects of dark matter annihilation heating, fragmentation within the minihalo, magnetic field amplification, and protostellar ionizing feedback. After these considerations, one expects that the first stars are massive ≳100M⊙, with dark matter annihilation heating having the potential to raise this scale by large factors. Higher accretion rates in later-forming minihalos may cause the Pop III.1 initial mass function to evolve to higher masses.

2020 ◽  
Vol 497 (1) ◽  
pp. 336-351 ◽  
Author(s):  
Piyush Sharda ◽  
Christoph Federrath ◽  
Mark R Krumholz

ABSTRACT Magnetic fields play an important role for the formation of stars in both local and high-redshift galaxies. Recent studies of dynamo amplification in the first dark matter haloes suggest that significant magnetic fields were likely present during the formation of the first stars in the Universe at redshifts of 15 and above. In this work, we study how these magnetic fields potentially impact the initial mass function (IMF) of the first stars. We perform 200 high-resolution, three-dimensional (3D), magnetohydrodynamic (MHD) simulations of the collapse of primordial clouds with different initial turbulent magnetic field strengths as predicted from turbulent dynamo theory in the early Universe, forming more than 1100 first stars in total. We detect a strong statistical signature of suppressed fragmentation in the presence of strong magnetic fields, leading to a dramatic reduction in the number of first stars with masses low enough that they might be expected to survive to the present-day. Additionally, strong fields shift the transition point where stars go from being mostly single to mostly multiple to higher masses. However, irrespective of the field strength, individual simulations are highly chaotic, show different levels of fragmentation and clustering, and the outcome depends on the exact realization of the turbulence in the primordial clouds. While these are still idealized simulations that do not start from cosmological initial conditions, our work shows that magnetic fields play a key role for the primordial IMF, potentially even more so than for the present-day IMF.


2009 ◽  
Vol 5 (S265) ◽  
pp. 65-66
Author(s):  
Anne-Katharina Jappsen ◽  
Simon C. O. Glover ◽  
Mordecai-Mark Mac Low ◽  
Ralf S. Klessen

AbstractThe formation of the first stars out of metal-free gas appears to result in stars at least an order of magnitude more massive than in the present-day case. We here consider what controls the transition from a primordial to a modern initial mass function. We study the influence of low levels of metal enrichment and different initial conditions on the cooling and collapse of initially ionized gas in small protogalactic halos using three-dimensional, smoothed particle hydrodynamics simulations. We argue that fragmentation at moderate density depends on the initial conditions for star formation more than on the metal abundances present.


2021 ◽  
Vol 502 (4) ◽  
pp. 5185-5199
Author(s):  
Hamidreza Mahani ◽  
Akram Hasani Zonoozi ◽  
Hosein Haghi ◽  
Tereza Jeřábková ◽  
Pavel Kroupa ◽  
...  

ABSTRACT Some ultracompact dwarf galaxies (UCDs) have elevated observed dynamical V-band mass-to-light (M/LV) ratios with respect to what is expected from their stellar populations assuming a canonical initial mass function (IMF). Observations have also revealed the presence of a compact dark object in the centres of several UCDs, having a mass of a few to 15 per cent of the present-day stellar mass of the UCD. This central mass concentration has typically been interpreted as a supermassive black hole, but can in principle also be a subcluster of stellar remnants. We explore the following two formation scenarios of UCDs: (i) monolithic collapse and (ii) mergers of star clusters in cluster complexes as are observed in massively starbursting regions. We explore the physical properties of the UCDs at different evolutionary stages assuming different initial stellar masses of the UCDs and the IMF being either universal or changing systematically with metallicity and density according to the integrated Galactic IMF theory. While the observed elevated M/LV ratios of the UCDs cannot be reproduced if the IMF is invariant and universal, the empirically derived IMF that varies systematically with density and metallicity shows agreement with the observations. Incorporating the UCD-mass-dependent retention fraction of dark remnants improves this agreement. In addition, we apply the results of N-body simulations to young UCDs and show that the same initial conditions describing the observed M/LV ratios reproduce the observed relation between the half-mass radii and the present-day masses of the UCDs. The findings thus suggest that the majority of UCDs that have elevated M/LV ratios could have formed monolithically with significant remnant-mass components that are centrally concentrated, while those with small M/LV values may be merged star cluster complexes.


2007 ◽  
Vol 3 (S244) ◽  
pp. 17-25 ◽  
Author(s):  
E. Zackrisson ◽  
N. Bergvall ◽  
C. Flynn ◽  
G. Östlin ◽  
G. Micheva ◽  
...  

AbstractDeep optical/near-IR surface photometry of galaxies outside the Local Group have revealed faint and very red halos around objects as diverse as disk galaxies and starbursting dwarf galaxies. The colours of these structures are too extreme to be reconciled with stellar populations similar to those seen in the stellar halos of the Milky Way or M31, and alternative explanations like dust reddening, high metallicities or nebular emission are also disfavoured. A stellar population obeying an extremely bottom-heavy initial mass function (IMF), is on the other hand consistent with all available data. Because of its high mass-to-light ratio, such a population would effectively behave as baryonic dark matter and could account for some of the baryons still missing in the low-redshift Universe. Here, we give an overview of current red halo detections, alternative explanations for the origin of the red colours and ongoing searches for red halos around types of galaxies for which this phenomenon has not yet been reported. A number of potential tests of the bottom-heavy IMF hypothesis are also discussed.


2012 ◽  
Vol 752 (2) ◽  
pp. 163 ◽  
Author(s):  
A. Sonnenfeld ◽  
T. Treu ◽  
R. Gavazzi ◽  
P. J. Marshall ◽  
M. W. Auger ◽  
...  

2019 ◽  
Vol 488 (2) ◽  
pp. 2970-2975 ◽  
Author(s):  
Michael Y Grudić ◽  
Philip F Hopkins

Abstract Most simulations of galaxies and massive giant molecular clouds (GMCs) cannot explicitly resolve the formation (or predict the main-sequence masses) of individual stars. So they must use some prescription for the amount of feedback from an assumed population of massive stars (e.g. sampling the initial mass function, IMF). We perform a methods study of simulations of a star-forming GMC with stellar feedback from UV radiation, varying only the prescription for determining the luminosity of each stellar mass element formed (according to different IMF sampling schemes). We show that different prescriptions can lead to widely varying (factor of ∼3) star formation efficiencies (on GMC scales) even though the average mass-to-light ratios agree. Discreteness of sources is important: radiative feedback from fewer, more-luminous sources has a greater effect for a given total luminosity. These differences can dominate over other, more widely recognized differences between similar literature GMC-scale studies (e.g. numerical methods, cloud initial conditions, presence of magnetic fields). Moreover the differences in these methods are not purely numerical: some make different implicit assumptions about the nature of massive star formation, and this remains deeply uncertain in star formation theory.


2006 ◽  
Vol 369 (2) ◽  
pp. 825-834 ◽  
Author(s):  
Raffaella Schneider ◽  
Ruben Salvaterra ◽  
Andrea Ferrara ◽  
Benedetta Ciardi

Sign in / Sign up

Export Citation Format

Share Document