central mass
Recently Published Documents


TOTAL DOCUMENTS

218
(FIVE YEARS 34)

H-INDEX

29
(FIVE YEARS 4)

Author(s):  
M. K. Jasim ◽  
Anirudh Pradhan ◽  
Ayan Banerjee ◽  
Takol Tangphati ◽  
Grigoris Panotopoulos

The observations of pulsars with masses close to [Formula: see text] have put strong constraints on the equation-of-state (EoS) of neutron-rich matter at supranuclear densities. Moreover, the exact internal composition of those objects is largely unknown to us. Aiming to reach the [Formula: see text] limit, here we investigate the impact of electric charge on properties of compact stars assuming that the charge distribution is proportional to the mass density. The study is carried out by solving the Tolman–Oppenheimer–Volkoff (TOV) equation for a well-motivated exotic quark matter in the color-flavor-locked (CFL) phase of color superconductivity. The existence of the CFL phase may be the true ground state of hadronic matter with the possibility of the existence of a pure stable quark star (QS). Concerning the equation-of-state, we obtain structural properties of quark stars and compute the mass, the radius as well as the total electric charge of the star. We analyze the dependence of the physical properties of these QSs depending on the free parameters with special attention on mass–radius relation. We also briefly discuss the mass versus central mass density [Formula: see text] relation for stability, the effect of electric charge and compactness. Finally, our results are compared with the recent observations data on mass–radius relationship.


Universe ◽  
2021 ◽  
Vol 7 (9) ◽  
pp. 346
Author(s):  
Felipe J. Llanes-Estrada

The flattening of spiral-galaxy rotation curves is unnatural in view of the expectations from Kepler’s third law and a central mass. It is interesting, however, that the radius-independence velocity is what one expects in one less dimension. In our three-dimensional space, the rotation curve is natural if, outside the galaxy’s center, the gravitational potential corresponds to that of a very prolate ellipsoid, filament, string, or otherwise cylindrical structure perpendicular to the galactic plane. While there is observational evidence (and numerical simulations) for filamentary structure at large scales, this has not been discussed at scales commensurable with galactic sizes. If, nevertheless, the hypothesis is tentatively adopted, the scaling exponent of the baryonic Tully–Fisher relation due to accretion of visible matter by the halo comes out to reasonably be 4. At a minimum, this analytical limit would suggest that simulations yielding prolate haloes would provide a better overall fit to small-scale galaxy data.


Author(s):  
Margarita Y. Dvorkina ◽  
Ekaterina V. Nikonorova

The article describes contribution to the library science and scientific activity of the Russian State Library (RSL) of the famous librarian Maria Ivanovna Akilina (April 13, 1953 — June 04, 2021).Since 1989, first as senior research scientist in the departments of the Russian State Library, and then in the scientific research department of library science, she worked her way up from leading researcher to the head of the department. Together with her colleagues — library scientists, she made the great contribution to the development of problems of the general theory of library science, the organization of practical activities of libraries, scientific and methodological assistance to libraries of the country.In the scientific research department of library science, there was created the all-Russian system for monitoring library collections; there were studied the issues of standardization of library science; and the work was carried out to create the Electronic Library of the RSL. The department developed and implemented the methodology for preparing the first fundamental unique reference publication on library science in our country — the “Library Encyclopaedia”, which was published in 2007 by the “Pashkov Dom” publisher. M.I. Akilina was a member of the editorial board of this publication; she also made a great contribution to the work as an editor and author of the articles. Together with the staff of the department from 2002 through 2013, she actively participated in the publication of the scientific-practical collection “Librarianship — the 21st Century” — the supplement to the journal “Bibliotekovedenie” [Russian Journal of Library Science], and also became one of the compilers of the collection “Library Research in the System of Postnonclassical Science”.M.I. Akilina managed to create an atmosphere of creativity and scientific research in the department, which became a significant factor in the development of interdisciplinary approaches to the study of librarianship, its various aspects and research practices. Since 2015, M.I. Akilina worked as a leading research scientist in the Centre for the study of problems of library development in the information society. She is the author of more than 100 scientific papers, major part of which is devoted to the scientific and methodological activities of libraries and general theoretical problems of library science; these are the publications about national, central, mass rural and other libraries. When communicating with colleagues, she always took into account not only their achievements, but also the ability to be honest both in scientific work and in human relations. Her contribution to the library scientific research will undoubtedly become part of the research heritage of library science.


2021 ◽  
Author(s):  
Peter D. Morley

This paper is concerned with the mathematical description of orbits that do not have a constant central gravitating mass. Instead, the attracting mass is a diffuse condensate, a situation which classical orbital dynamics has never encountered before. The famous Coma Cluster of Galaxies is embedded in Dark Matter. Condensed Neutrino Objects (CNO), which are stable assemblages of neutrinos and anti-neutrinos, are candidates for the Dark Matter. A CNO solution has been attained previously for the Coma Cluster, which allows mathematical modeling of galaxy orbital mechanics within Dark Matter, first reported here. For non-zero eccentricity galaxy orbits, each point along the trajectory sees a different gravitating central mass, akin to satellite orbits inside Earth. Mathematically, the galaxy orbits are non-Keplerian, spirographs.


Author(s):  
Stefan von Weber ◽  
Alexander von Eye

The cosmological model of the expanding balloon in 4D-space (CM) delivers in interaction with a homogeneous vector field exactly Newton’s law of gravitation with its 1/r-shape of the gravitational funnel. So far, the depth of space, W, in the 4-th spatial dimension can only be calculated using the theoretical approach of Feynman’s radius of excess rex=a/3 with Schwarzschild-radius a. With this, the connection to the general theory of relativity (GR) is established, but the situation is unsatisfactory. In the present study, the possibilities of an experimental approach to the calculation of spatial depth, W, are explored. The only experimental approach so far is the bending of light on a central mass. We hypothesize in addition to the main effect φ = -4a/y, i.e., the angle of diffraction of a light beam on a heavy central mass in the distance y and with Schwarzschild-radius a, an additional effect close to the center of the form φC ~ -1/y4. This additional effect has on the edge of the central mass about 1/3 of the strength of the main effect. However, its influence disappears very quickly with increasing distance. For this reason the sun cannot be used as the central mass. The bright corona and the strong magnetosphere do not allow measurements close to the sun. However, ESA’s GAIA mission puts the planet Jupiter at the center of interest. This spacecraft measures with extremely high precision the positions of billions of stars. Results of first data analyses have already been published. As a side effect - the application of the CM to small particles provides an indication that the radius of the electron could be in the order of 10-23 m.


2021 ◽  
Vol 914 (1) ◽  
pp. 7
Author(s):  
Yicheng Guo ◽  
Timothy Carleton ◽  
Eric F. Bell ◽  
Zhu Chen ◽  
Avishai Dekel ◽  
...  
Keyword(s):  

Entropy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. 511
Author(s):  
Claudio Cremaschini ◽  
Massimo Tessarotto

A new type of quantum correction to the structure of classical black holes is investigated. This concerns the physics of event horizons induced by the occurrence of stochastic quantum gravitational fields. The theoretical framework is provided by the theory of manifestly covariant quantum gravity and the related prediction of an exclusively quantum-produced stochastic cosmological constant. The specific example case of the Schwarzschild–deSitter geometry is looked at, analyzing the consequent stochastic modifications of the Einstein field equations. It is proved that, in such a setting, the black hole event horizon no longer identifies a classical (i.e., deterministic) two-dimensional surface. On the contrary, it acquires a quantum stochastic character, giving rise to a frame-dependent transition region of radial width δr between internal and external subdomains. It is found that: (a) the radial size of the stochastic region depends parametrically on the central mass M of the black hole, scaling as δr∼M3; (b) for supermassive black holes δr is typically orders of magnitude larger than the Planck length lP. Instead, for typical stellar-mass black holes, δr may drop well below lP. The outcome provides new insight into the quantum properties of black holes, with implications for the physics of quantum tunneling phenomena expected to arise across stochastic event horizons.


2021 ◽  
Vol 502 (4) ◽  
pp. 5185-5199
Author(s):  
Hamidreza Mahani ◽  
Akram Hasani Zonoozi ◽  
Hosein Haghi ◽  
Tereza Jeřábková ◽  
Pavel Kroupa ◽  
...  

ABSTRACT Some ultracompact dwarf galaxies (UCDs) have elevated observed dynamical V-band mass-to-light (M/LV) ratios with respect to what is expected from their stellar populations assuming a canonical initial mass function (IMF). Observations have also revealed the presence of a compact dark object in the centres of several UCDs, having a mass of a few to 15 per cent of the present-day stellar mass of the UCD. This central mass concentration has typically been interpreted as a supermassive black hole, but can in principle also be a subcluster of stellar remnants. We explore the following two formation scenarios of UCDs: (i) monolithic collapse and (ii) mergers of star clusters in cluster complexes as are observed in massively starbursting regions. We explore the physical properties of the UCDs at different evolutionary stages assuming different initial stellar masses of the UCDs and the IMF being either universal or changing systematically with metallicity and density according to the integrated Galactic IMF theory. While the observed elevated M/LV ratios of the UCDs cannot be reproduced if the IMF is invariant and universal, the empirically derived IMF that varies systematically with density and metallicity shows agreement with the observations. Incorporating the UCD-mass-dependent retention fraction of dark remnants improves this agreement. In addition, we apply the results of N-body simulations to young UCDs and show that the same initial conditions describing the observed M/LV ratios reproduce the observed relation between the half-mass radii and the present-day masses of the UCDs. The findings thus suggest that the majority of UCDs that have elevated M/LV ratios could have formed monolithically with significant remnant-mass components that are centrally concentrated, while those with small M/LV values may be merged star cluster complexes.


2021 ◽  
Vol 502 (3) ◽  
pp. 4125-4136
Author(s):  
Matthias J Raives ◽  
Todd A Thompson ◽  
Sean M Couch

ABSTRACT In the problem of steady free fall on to a standing shockwave around a central mass, the ‘antesonic’ condition limits the regime of stable accretion to $c_T^2/v_\mathrm{esc}^2\le 3/16$, where cT is the isothermal sound speed in the subsonic post-shock flow, and vesc is the escape velocity at the shock radius. Above this limit, it is impossible to satisfy both the Euler equation and the shock jump conditions, and the system transitions to a wind. This physics explains the existence of a critical neutrino luminosity in steady-state models of accretion in the context of core-collapse supernovae. Here, we extend the antesonic condition to flows with rotation and turbulence using a simple one-dimensional formalism. Both effects decrease the critical post-shock sound speed required for explosion. While quite rapid rotation is required for a significant change to the critical condition, we show that the level of turbulence typically achieved in supernova simulations can greatly impact the critical value of $c_T^2/v_\mathrm{esc}^2$. A core angular velocity corresponding to a millisecond rotation period after contraction of the proto-neutron star results in only a ∼5 per cent reduction of the critical curve. In contrast, near-sonic turbulence with specific turbulent kinetic energy $K/c_T^2=0.5-1$, leads to a decrease in the critical value of $c_T^2/v_{\rm esc}^2$ by ∼20 to 40 per cent. This analysis provides a framework for understanding the role of post-shock turbulence in instigating explosions in models that would otherwise fail and helps explain why multidimensional simulations explode more easily than their one-dimensional counterparts.


Sign in / Sign up

Export Citation Format

Share Document