scholarly journals Globular cluster ages from main sequence fitting and detached, eclipsing binaries: The case of 47 Tuc

2008 ◽  
Vol 4 (S258) ◽  
pp. 171-176 ◽  
Author(s):  
Aaron Dotter ◽  
Janusz Kaluzny ◽  
Ian B. Thompson

AbstractAge constraints are most often placed on globular clusters by comparing their CMDs with theoretical isochrones. The recent discoveries of detached, eclipsing binaries in such systems by the Cluster AgeS Experiment (CASE) provide new insights into their ages and, at the same time, provide much-needed tests of stellar evolution models. We describe efforts to model the properties of the detached, eclipsing binary V69 in 47 Tuc and compare age constraints derived from stellar evolution models of V69A and B with ages obtained from fitting isochrones to the cluster CMD. We determine whether or not, under reasonable assumptions of distance, reddening, and metallicity, it is possible to simultaneously constrain the age and He content of 47 Tuc.

1980 ◽  
Vol 88 ◽  
pp. 561-565 ◽  
Author(s):  
R. F. Webbink

A brief survey of known eclipsing binaries and cataclysmic variables in globular cluster fields is presented. None of the 47 known or suspected eclipsing variables is a promising candidate, although a very few remain possible members. V101 in M5 is a good candidate for membership, among 5 known or suspected dwarf novae. Three novae have been discovered in globular cluster fields, of which two are almost certainly members. Attention is also called to the eclipsing binary V80, a system which appears to contain an RRc variable, in the dwarf spheroidal galaxy in Ursa Minor.


1993 ◽  
Vol 137 ◽  
pp. 451-453 ◽  
Author(s):  
Charles R. Proffitt

AbstractThe effects of Coulomb corrections on the evolution of globular clusters stars are discussed. Coulomb corrections alter the equation of state by about 1% in most of the stellar interior, and for stars of fixed initial parameters, this results in an 8% increase in the ZAMS luminosity and an 8% decrease in the age at the main sequence turnoff. Ages for globular clusters measured by comparing to the turnoff luminosity of theoretical isochrones are lowered by ≈ 4% when Coulomb effects are included.


1971 ◽  
Vol 15 ◽  
pp. 235-237
Author(s):  
Edward H. Geyer

The existence of eclipsing binaries, though extremely rare, in stellar systems like globular clusters, should attract the observers, because one could obtain fundamental data on highly evolved stars. The variable star V 78 in the globular cluster NGC 5139, which was found by BAILEY (1901), is one of these rare cases. MARTIN (1938) derived the period P = 1ḍ168118, and showed by means of an extensive photographic photometry that it is an Algol type eclipsing binary. Recently SISTERO et al. (1968, 1969) rediscussed the observations of MARTIN, and with additional measurements derived the following light elements:


1988 ◽  
Vol 126 ◽  
pp. 685-686
Author(s):  
Paul Hertz

Two classes of globular cluster X-ray sources are known. Each consists of compact objects accreting material from a close binary companion. The brighter class has a neutron star primary, and the low luminosity class has a white dwarf primary. These sources formed by tidal capture of the compact object by a main sequence dwarf in the core of the globular cluster. Their presence and number has implications on the end points of stellar evolution in globular clusters and on the formation of binaries in cluster cores.


1996 ◽  
Vol 174 ◽  
pp. 375-376
Author(s):  
P.-Y. Longaretti ◽  
C. Lagoute

We have computed simplified globular cluster evolutionary tracks which take into account the effects of internal relaxation, of the cluster rotation, of the galactic tidal field, and, in a cruder way, of stellar evolution and of gravitational shocking. The objectives are first to quantify the influence of rotation in the dynamical evolution of globular clusters; and second, to investigate the evolution of globular cluster angular momentum and flattening (Lagoute and Longaretti 1995a, Longaretti and Lagoute 1995b,c).


1980 ◽  
Vol 85 ◽  
pp. 357-359 ◽  
Author(s):  
Martha H. Liller

It is becoming increasingly clear that no (or only one or two) binaries occur among the evolved stars in globular clusters. Therefore, if binaries exist at all in these systems, they must be found on or near the main sequence. I have chosen 6 clusters to search for faint eclipsing binaries by the following criteria: (1)the apparent visual distance modulus (Harris 1976) (m-M)V ≤ 14.5 mag;(2)the Peterson and King (1975) concentration class c ≤ 1.5, so that the search can be conducted near or at the cluster center where binaries would most likely be found; and(3)the galactic latitude is sufficiently large to avoid problems of extreme contamination by field stars. The clusters thus chosen are NGC3201, 5139 (Omega Cen), 6121 (M4), 6218 (M12), 6254 (M10), and 6809 (M55). The plate material obtained on three nights with the 4-m telescope at CTIO in 1979, consists of seven to nine plates of each cluster on IIIa-F emulsion with an RG610 filter; the search is being conducted with a blink microscope.


1989 ◽  
Vol 111 ◽  
pp. 121-140
Author(s):  
Allan Sandage

AbstractIt is shown that the intrinsic spread in the absolute magnitudes of the RR Lyrae variables in a given globular cluster can reach 0.5 magnitudes at a given period or at a given color, due to luminosity evolution away from the zero age horizontal (ZAHB). The size of this intrinsic luminosity spread is largest in clusters of the highest metallicity.The absolute magnitude of the ZAHB itself also differs from cluster to cluster as a function of metallicity, being brightest in clusters of the lowest metallicity. Three independent methods of calibrating the ZAHB RR Lyrae luminosities each show a strong variation of MV(RR) with [Fe/H]. The pulsation equation of P<ρ>0.5 = Q(M,Te, L) used with the observed periods, temperatures, and masses of field and of cluster RR Lyraes gives the very steep luminosity-metallicity dependence of dMv(RR)/d[Fe/H] = 0.42. Main sequence fitting of the color-magnitude diagrams of clusters which have modern main-sequence photometry gives a confirming steep slope of 0.39. A summary of Baade-Wesselink MV(RR) values for field stars determined in four independent recent studies also shows a luminosity-metallicity dependence, but less steep with a slope of dMV(RR)/d[Fe/H] = 0.21.Observations show that the magnitude difference between the main sequence turn-off point and the ZAHB in a number of well observed globular clusters is independent of [Fe/H], and has a stable value of dV = 3.54 with a disperion of only 0.1 magnitudes. Using this fact, the absolute magnitude of the main sequence turn-off is determined in any given globular cluster from the observed apparent magnitude of the ZAHB by adopting any particular MV(RR) = f([Fe/H]) calibration.Ages of the clusters are shown to vary with [Fe/H] by amounts that depend upon the slopes of the MV(RR) = f([Fe/H]) calibrations. The calibrations show that there would be a steep dependence of the age on [Fe/H] if MV(RR) does not depend on [Fe/H]. No dependence of age on metallicity exists if the RR Lyrae luminosities depend on [Fe/H] as dMV(RR)/d[Fe/H] = 0.37. If Oxygen is not enhanced as [Fe/H] decreases, the absolute average age of the globular cluster system is 16 Gyr, independent of [Fe/H], using the steep MV(RR)/[Fe/H] calibration that is favored. If Oxygen is enhanced by [O/Fe] = – 0.14 [Fe/H] + 0.40 for [Fe/H] < –1.0, as suggested from the observations of field subdwarfs, then the age of the globular cluster system decreases to 13 Gyr, again independent of [Fe/H], if the RR Lyrae ZAHB luminosities have a metallicity dependence of dMV(RR)/d[Fe/H] = 0.37.


2008 ◽  
Vol 4 (S258) ◽  
pp. 161-170 ◽  
Author(s):  
Keivan G. Stassun ◽  
Leslie Hebb ◽  
Mercedes López-Morales ◽  
Andrej Prša

AbstractEclipsing binary stars provide highly accurate measurements of the fundamental physical properties of stars. They therefore serve as stringent tests of the predictions of evolutionary models upon which most stellar age determinations are based. Models generally perform very well in predicting coeval ages for eclipsing binaries with main-sequence components more massive than ≈1.2 M⊙; relative ages are good to ~5% or better in this mass regime. Low-mass main-sequence stars (M < 0.8 M⊙) reveal large discrepancies in the model predicted ages, primarily due to magnetic activity in the observed stars that appears to inhibit convection and likely causes the radii to be 10–20% larger than predicted. In mass-radius diagrams these stars thus appear 50–90% older or younger than they really are. Aside from these activity-related effects, low-mass pre–main-sequence stars at ages ~1 Myr can also show non-coevality of ~30% due to star formation effects, however these effects are largely erased after ~10 Myr.


2009 ◽  
Vol 5 (S268) ◽  
pp. 263-268 ◽  
Author(s):  
Karin Lind ◽  
Francesca Primas ◽  
Corinne Charbonnel ◽  
Frank Grundahl ◽  
Martin Asplund

AbstractThe “stellar” solution to the cosmological lithium problem proposes that surface depletion of lithium in low-mass, metal-poor stars can reconcile the lower abundances found for Galactic halo stars with the primordial prediction. Globular clusters are ideal environments for studies of the surface evolution of lithium, with large number statistics possible to obtain for main sequence stars as well as giants. We discuss the Li abundances measured for >450 stars in the globular cluster NGC 6397, focusing on the evidence for lithium depletion and especially highlighting how the inferred abundances and interpretations are affected by early cluster self-enrichment and systematic uncertainties in the effective temperature determination.


2000 ◽  
Vol 198 ◽  
pp. 354-355
Author(s):  
D.M. Allen ◽  
B.V. Castilho ◽  
L. Pasquini ◽  
B. Barbuy ◽  
P. Molaro

Five giants and 11 subgiants of the metal-poor globular cluster NGC 6397 are analysed. In this Poster we present the lithium abundances derived. The present Li abundances and those of turnoff stars by Pasquini & Molaro (1996) are complementary in terms of stellar evolution stage, and show the Li abundances decreasing off the main sequence along the red giant branch.


Sign in / Sign up

Export Citation Format

Share Document