scholarly journals Global MHD phenomena and their importance for stellar surfaces

2010 ◽  
Vol 6 (S273) ◽  
pp. 141-147
Author(s):  
Rainer Arlt

AbstractThis review is an attempt to elucidate MHD phenomena relevant for stellar magnetic fields. The full MHD treatment of a star is a problem which is numerically too demanding. Mean-field dynamo models use an approximation of the dynamo action from the small-scale motions and deliver global magnetic modes which can be cyclic, stationary, axisymmetric, and non-axisymmetric. Due to the lack of a momentum equation, MHD instabilities are not visible in this picture. However, magnetic instabilities must set in as a result of growing magnetic fields and/or buoyancy. Instabilities deliver new timescales, saturation limits and topologies to the system probably providing a key to the complex activity features observed on stars.

1975 ◽  
Vol 67 (3) ◽  
pp. 417-443 ◽  
Author(s):  
W. V. R. Maekus ◽  
M. R. E. Proctor

Past study of the large-scale consequences of forced small-scale motions in electrically conducting fluids has led to the ‘α-effect’ dynamos. Various linear kinematic aspects of these dynamos have been explored, suggesting their value in the interpretation of observed planetary and stellar magnetic fields. However, large-scale magnetic fields with global boundary conditions can not be force free and in general will cause large-scale motions as they grow. I n this paper the finite amplitude behaviour of global magnetic fields and the large-scale flows induced by them in rotating systems is investigated. In general, viscous and ohmic dissipative mechanisms both play a role in determining the amplitude and structure of the flows and magnetic fields which evolve. In circumstances where ohmic loss is the principal dissipation, it is found that determination of a geo- strophic flow is an essential part of the solution of the basic stability problem. Nonlinear aspects of the theory include flow amplitudes which are independent of the rotation and a total magnetic energy which is directly proportional to the rotation. Constant a is the simplest example exhibiting the various dynamic balances of this stabilizing mechanism for planetary dynamos. A detailed analysis is made for this case to determine the initial equilibrium of fields and flows in a rotating sphere.


2020 ◽  
Vol 495 (4) ◽  
pp. 4557-4569 ◽  
Author(s):  
Naveen Jingade ◽  
Nishant K Singh

ABSTRACT We study mean field dynamo action in a background linear shear flow by employing pulsed renewing flows with fixed kinetic helicity and non-zero correlation time (τ). We use plane shearing waves in terms of time-dependent exact solutions to the Navier–Stokes equation as derived by Singh & Sridhar (2017). This allows us to self-consistently include the anisotropic effects of shear on the stochastic flow. We determine the average response tensor governing the evolution of mean magnetic field, and study the properties of its eigenvalues that yield the growth rate (γ) and the cycle period (Pcyc) of the mean magnetic field. Both, γ and the wavenumber corresponding to the fastest growing axisymmetric mode vary non-monotonically with shear rate S when τ is comparable to the eddy turnover time T, in which case, we also find quenching of dynamo when shear becomes too strong. When $\tau /T\sim {\cal O}(1)$, the cycle period (Pcyc) of growing dynamo wave scales with shear as Pcyc ∝ |S|−1 at small shear, and it becomes nearly independent of shear as shear becomes too strong. This asymptotic behaviour at weak and strong shear has implications for magnetic activity cycles of stars in recent observations. Our study thus essentially generalizes the standard αΩ (or α2Ω) dynamo as also the α effect is affected by shear and the modelled random flow has a finite memory.


2002 ◽  
Vol 456 ◽  
pp. 219-237 ◽  
Author(s):  
FAUSTO CATTANEO ◽  
DAVID W. HUGHES ◽  
JEAN-CLAUDE THELEN

By considering an idealized model of helically forced flow in an extended domain that allows scale separation, we have investigated the interaction between dynamo action on different spatial scales. The evolution of the magnetic field is studied numerically, from an initial state of weak magnetization, through the kinematic and into the dynamic regime. We show how the choice of initial conditions is a crucial factor in determining the structure of the magnetic field at subsequent times. For a simulation with initial conditions chosen to favour the growth of the small-scale field, the evolution of the large-scale magnetic field can be described in terms of the α-effect of mean field magnetohydrodynamics. We have investigated this feature further by a series of related numerical simulations in smaller domains. Of particular significance is that the results are consistent with the existence of a nonlinearly driven α-effect that becomes saturated at very small amplitudes of the mean magnetic field.


2012 ◽  
Vol 86 (2) ◽  
Author(s):  
Sanved Kolekar ◽  
Kandaswamy Subramanian ◽  
S. Sridhar

2008 ◽  
Vol 4 (S259) ◽  
pp. 479-484 ◽  
Author(s):  
Michał Hanasz ◽  
K. Otmianowska-Mazur ◽  
H. Lesch ◽  
G. Kowal ◽  
M. Soida ◽  
...  

AbstractWe present new developments on the Cosmic–Ray driven, galactic dynamo, modeled by means of direct, resistive CR–MHD simulations, performed with ZEUS and PIERNIK codes. The dynamo action, leading to the amplification of large–scale galactic magnetic fields on galactic rotation timescales, appears as a result of galactic differential rotation, buoyancy of the cosmic ray component and resistive dissipation of small–scale turbulent magnetic fields. Our new results include demonstration of the global–galactic dynamo action driven by Cosmic Rays supplied in supernova remnants. An essential outcome of the new series of global galactic dynamo models is the equipartition of the gas turbulent energy with magnetic field energy and cosmic ray energy, in saturated states of the dynamo on large galactic scales.


2020 ◽  
Vol 499 (2) ◽  
pp. 2076-2086
Author(s):  
Amit Seta ◽  
Christoph Federrath

ABSTRACT Magnetic fields in galaxies and galaxy clusters are amplified from a very weak seed value to the observed $\mu$G strengths by the turbulent dynamo. The seed magnetic field can be of primordial or astrophysical origin. The strength and structure of the seed field, on the galaxy or galaxy cluster scale, can be very different, depending on the seed-field generation mechanism. The seed field first encounters the small-scale dynamo, thus we investigate the effects of the strength and structure of the seed field on the small-scale dynamo action. Using numerical simulations of driven turbulence and considering three different seed-field configurations: (1) uniform field, (2) random field with a power-law spectrum, and (3) random field with a parabolic spectrum, we show that the strength and statistical properties of the dynamo-generated magnetic fields are independent of the details of the seed field. We demonstrate that, even when the small-scale dynamo is not active, small-scale magnetic fields can be generated and amplified linearly due to the tangling of the large-scale field. In the presence of the small-scale dynamo action, we find that any memory of the seed field for the non-linear small-scale dynamo generated magnetic fields is lost and thus, it is not possible to trace back seed-field information from the evolved magnetic fields in a turbulent medium.


2020 ◽  
Vol 641 ◽  
pp. A165
Author(s):  
Evangelia Ntormousi ◽  
Konstantinos Tassis ◽  
Fabio Del Sordo ◽  
Francesca Fragkoudi ◽  
Rüdiger Pakmor

Context. The magnetic fields of spiral galaxies are so strong that they cannot qualify as primordial. Their typical values are over one billion times higher than any value predicted for the early Universe. Explaining this immense growth and incorporating it in galaxy evolution theories is one of the long-standing challenges in astrophysics. Aims. So far, the most successful theory for the sustained growth of the galactic magnetic field is the alpha-omega dynamo. This theory predicts a characteristic dipolar or quadrupolar morphology for the galactic magnetic field, which has been observed in external galaxies. So far, however, there has been no direct demonstration of a mean-field dynamo operating in direct, multi-physics simulations of spiral galaxies. We carry out such a demonstration in this work. Methods. We employed numerical models of isolated, star-forming spiral galaxies that include a magnetized gaseous disk, a dark matter halo, stars, and stellar feedback. Naturally, the resulting magnetic field has a complex morphology that includes a strong random component. Using a smoothing of the magnetic field on small scales, we were able to separate the mean from the turbulent component and analyze them individually. Results. We find that a mean-field dynamo naturally occurs as a result of the dynamical evolution of the galaxy and amplifies the magnetic field by an order of magnitude over half a Gyr. Despite the highly dynamical nature of these models, the morphology of the mean component of the field is identical to analytical predictions. Conclusions. This result underlines the importance of the mean-field dynamo in galactic evolution. Moreover, by demonstrating the natural growth of the magnetic field in a complex galactic environment, it brings us a step closer to understanding the cosmic origin of magnetic fields.


2012 ◽  
Vol 8 (S294) ◽  
pp. 313-318
Author(s):  
D. Sokoloff ◽  
H. Zhang ◽  
D. Moss ◽  
N. Kleeorin ◽  
K. Kuzanyan ◽  
...  

AbstractWe investigate to what extent the current helicity distribution observed in solar active regions is compatible with solar dynamo models. We use an advanced 2D mean-field dynamo model with dynamo action largely concentrated near the bottom of the convective zone, and dynamo saturation based on the evolution of the magnetic helicity and algebraic quenching. For comparison, we also studied a more basic 2D mean-field dynamo model with simple algebraic alpha quenching only. Using these numerical models we obtain butterfly diagrams for both the small-scale current helicity and the large-scale magnetic helicity, and compare them with the butterfly diagram for the current helicity in active regions obtained from observations. This comparison shows that the current helicity of active regions, as estimated by −A·B evaluated at the depth from which the active region arises, resembles the observational data much better than the small-scale current helicity calculated directly from the helicity evolution equation. Here B and A are respectively the dynamo generated mean magnetic field and its vector potential.


2010 ◽  
Vol 6 (S272) ◽  
pp. 160-165
Author(s):  
Stéphane Mathis

AbstractIn this talk, I review the different MHD processes, which take place in massive star interiors. First, I describe MHD instabilities, which act on magnetic fields in stellar radiation zones, and the dynamo action in massive stars that give strong indications in favor of a fossil origin of the fields observed at the surface of these stars. Then, I discuss the study of MHD turbulent relaxation processes, which are now examined in stellar interiors, to describe initial conditions for fossil magnetic fields. Finally, I focus on the state of the art of the modeling of the interaction between differential rotation, fossil magnetic field, meridional circulation, and turbulence.


Sign in / Sign up

Export Citation Format

Share Document