scholarly journals The 3D solar minimum with differential emission measure tomography

2011 ◽  
Vol 7 (S286) ◽  
pp. 123-133
Author(s):  
Alberto M. Vásquez ◽  
Richard A. Frazin ◽  
Zhenguang Huang ◽  
Ward B. Manchester ◽  
Paul Shearer

AbstractDifferential emission measure tomography (DEMT) makes use of extreme ultraviolet (EUV) image series to deliver two products: a) the three-dimensional (3D) reconstruction of the coronal emissivity in the instrumental bands, and b) the 3D distribution of the local differential emission measure (LDEM). The LDEM allows, in turn, construction of 3D maps of the electron density and temperature distribution. DEMT is being currently applied to the space-based EUV imagers, allowing reconstruction of the inner corona in the height range 1.00 to 1.25 R⊙. In this work we applied DEMT to different Carrington Rotations corresponding to the last two solar Cycle minima. To reconstruct the 2008 minimum we used data taken by the Extreme UltraViolet Imager (EUVI), on board the Solar TErrestrial RElations Observatory (STEREO) spacecraft, and to reconstruct the 1996 minimum we used data taken by the Extreme ultraviolet Imaging Telescope (EIT), on board the Solar and Heliospheric Observatory (SOHO). We show here comparative results, discussing the observed 3D density and temperature distributions in the context of global potential magnetic field extrapolations. We also compare the DEMT results with other observational and modeling efforts of the same periods.

2011 ◽  
Vol 7 (S286) ◽  
pp. 238-241
Author(s):  
Federico A. Nuevo ◽  
Alberto M. Vásquez ◽  
Richard A. Frazin ◽  
Zhenguang Huang ◽  
Ward B. Manchester

AbstractWe recently extended the differential emission measure tomography (DEMT) technique to be applied to the six iron bands of the Atmospheric Imaging Assembly (AIA) instrument aboard the Solar Dynamics Observatory (SDO). DEMT products are the 3D reconstruction of the coronal emissivity in the instrument's bands, and the 3D distribution of the local differential emission measure, in the height range 1.0 to 1.25 R⊙. We show here derived maps of the electron density and temperature of the inner solar corona during the rising phase of solar Cycle 24. We discuss the distribution of our results in the context of open/closed magnetic regions, as derived from a global potential field source surface (PFSS) model of the same period. We also compare the results derived with SDO/AIA to those derived with the Extreme UltraViolet Imager (EUVI) instrument aboard the Solar TErrestrial RElations Observatory (STEREO).


2018 ◽  
Vol 615 ◽  
pp. A47 ◽  
Author(s):  
Srividya Subramanian ◽  
Vinay L. Kashyap ◽  
Durgesh Tripathi ◽  
Maria S. Madjarska ◽  
John G. Doyle

We study the thermal structure and energetics of the point-like extreme ultraviolet (EUV) brightenings within a system of fan loops observed in the active region AR 11520. These brightenings were simultaneously observed on 2012 July 11 by the High-resolution Coronal (Hi-C) imager and the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO). We identified 27 brightenings by automatically determining intensity enhancements in both Hi-C and AIA 193 Å light curves. The energetics of these brightenings were studied using the Differential Emission Measure (DEM) diagnostics. The DEM weighted temperatures of these transients are in the range log T(K) = 6.2−6.6 with radiative energies ≈1024−25 ergs and densities approximately equal to a few times 109 cm−3. To the best of our knowledge, these are the smallest brightenings in EUV ever detected. We used these results to determine the mechanism of energy loss in these brightenings. Our analysis reveals that the dominant mechanism of energy loss for all the identified brightenings is conduction rather than radiation.


2001 ◽  
Vol 106 (A11) ◽  
pp. 25089-25102 ◽  
Author(s):  
S. T. Wu ◽  
Huinan Zheng ◽  
S. Wang ◽  
B. J. Thompson ◽  
S. P. Plunkett ◽  
...  

Solar Physics ◽  
2019 ◽  
Vol 295 (1) ◽  
Author(s):  
A. Hamada ◽  
T. Asikainen ◽  
K. Mursula

AbstractSynoptic maps of solar EUV intensities have been constructed for many decades in order to display the distribution of the different EUV emissions across the solar surface, with each map representing one Carrington rotation (i.e. one rotation of the Sun). This article presents a new solar EUV synoptic map dataset based on full-disk images from the Solar and Heliospheric Observatory/Extreme Ultraviolet Imaging Telescope (SOHO/EIT) and Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA). In order to remove the significant and complicated drift of EIT and AIA EUV intensities due to sensor degradation, we construct the synoptic maps in standardized intensity scale. We describe a method of homogenizing the SOHO/EIT maps with SDO/AIA maps by transforming the EIT intensity histograms to AIA levels. The new maps cover the years from 1996 to 2018 with 307 SOHO/EIT and 116 SDO/AIA synoptic maps, respectively. These maps provide a systematic and homogeneous view of the entire solar surface in four EUV wavelengths, and are well suited, e.g., for studying long-term coronal hole evolution.


Solar Physics ◽  
2019 ◽  
Vol 294 (10) ◽  
Author(s):  
Huw Morgan ◽  
James Pickering

Abstract Extreme ultraviolet (EUV) images of the optically-thin solar corona in multiple spectral channels give information on the emission as a function of temperature through differential emission measure (DEM) inversions. The aim of this paper is to describe, test, and apply a new DEM method named the Solar Iterative Temperature Emission Solver (SITES). The method creates an initial DEM estimate through a direct redistribution of observed intensities across temperatures according to the temperature response function of the measurement, and iteratively improves on this estimate through calculation of intensity residuals. It is simple in concept and implementation, is non-subjective in the sense that no prior constraints are placed on the solutions other than positivity and smoothness, and can process a thousand DEMs a second on a standard desktop computer. The resulting DEMs replicate model DEMs well in tests on Atmospheric Imaging Assembly/Solar Dynamics Observatory (AIA/SDO) synthetic data. The same tests show that SITES performs less well on very narrow DEM peaks, and should not be used for temperature diagnostics below ${\approx\,}0.5~\mbox{MK}$≈0.5MK in the case of AIA observations. The SITES accuracy of inversion compares well with two other established methods. A simple yet powerful new method to visualize DEM maps is introduced, based on a fractional emission measure (FEM). Applied to a set of AIA full-disk images, the SITES method and FEM visualization show very effectively the dominance of certain temperature regimes in different large-scale coronal structures. The method can easily be adapted for any multi-channel observations of optically-thin plasma and, given its simplicity and efficiency, will facilitate the processing of large existing and future datasets.


Sign in / Sign up

Export Citation Format

Share Document