active stars
Recently Published Documents


TOTAL DOCUMENTS

219
(FIVE YEARS 11)

H-INDEX

30
(FIVE YEARS 2)

Author(s):  
B. Seli ◽  
K. Oláh ◽  
L. Kriskovics ◽  
Zs. Kővári ◽  
K. Vida ◽  
...  
Keyword(s):  

2021 ◽  
Vol 909 (1) ◽  
pp. L12
Author(s):  
Evangelia Samara ◽  
Spiros Patsourakos ◽  
Manolis K. Georgoulis
Keyword(s):  

2020 ◽  
Vol 161 (1) ◽  
pp. 26
Author(s):  
Samuel H. C. Cabot ◽  
Rachael M. Roettenbacher ◽  
Gregory W. Henry ◽  
Lily Zhao ◽  
Robert O. Harmon ◽  
...  
Keyword(s):  

2020 ◽  
Vol 642 ◽  
pp. A225
Author(s):  
E. M. Amazo-Gómez ◽  
A. I. Shapiro ◽  
S. K. Solanki ◽  
G. Kopp ◽  
M. Oshagh ◽  
...  

Context. Stellar rotation periods can be determined by observing brightness variations caused by active magnetic regions transiting visible stellar disk as the star rotates. Successful stellar photometric surveys stemming from the Kepler and TESS observations have led to the determination of rotation periods in tens of thousands of young and active stars. However, there is still a lack of information on the rotation periods of older and less active stars like the Sun. The irregular temporal profiles of light curves caused by the decay times of active regions, which are comparable to, or even shorter than, stellar rotation periods, in combination with the random emergence of active regions make period determination for such stars very difficult. Aims. We tested the performance of a new method for the determination of stellar rotation periods against stars with previously determined rotation periods. The method is based on calculating the gradient of the power spectrum (GPS) and identifying the position of the inflection point (i.e. point with the highest gradient). The GPS method is specifically aimed at determining rotation periods of low-activity stars like the Sun. Methods. We applied the GPS method to 1047 Sun-like stars observed by the Kepler telescope. We considered two stellar samples individually: one with near-solar rotation periods (24–27.4 d) and a broad range of effective temperatures (5000–6000 K) and the other with near-solar effective temperatures (5700–5900 K) and a broad range of rotation periods (15–40 d). Results. We show that the GPS method returns precise values for stellar rotation periods. Furthermore, it allows us to constrain the ratio between facular and spot areas of active regions at the moment of their emergence. We also show that the relative facular area decreases with the stellar rotation rate. Conclusions. Our results suggest that the GPS method can be successfully applied to retrieve the periods of stars with both regular and non-regular light curves.


2020 ◽  
Vol 636 ◽  
pp. A69 ◽  
Author(s):  
E. M. Amazo-Gómez ◽  
A. I. Shapiro ◽  
S. K. Solanki ◽  
N. A. Krivova ◽  
G. Kopp ◽  
...  

Context. Young and active stars generally have regular, almost sinusoidal, patterns of variability attributed to their rotation, while the majority of older and less active stars, including the Sun, have more complex and non-regular light curves, which do not have clear rotational-modulation signals. Consequently, the rotation periods have been successfully determined only for a small fraction of the Sun-like stars (mainly the active ones) observed by transit-based planet-hunting missions, such as CoRoT, Kepler, and TESS. This suggests that only a small fraction of such systems have been properly identified as solar-like analogues. Aims. We aim to apply a new method of determining rotation periods of low-activity stars, such as the Sun. The method is based on calculating the gradient of the power spectrum (GPS) of stellar brightness variations and identifying a tell-tale inflection point in the spectrum. The rotation frequency is then proportional to the frequency of that inflection point. In this paper, we compare this GPS method to already-available photometric records of the Sun. Methods. We applied GPS, auto-correlation functions, Lomb-Scargle periodograms, and wavelet analyses to the total solar irradiance (TSI) time series obtained from the Total Irradiance Monitor on the Solar Radiation and Climate Experiment and the Variability of solar IRradiance and Gravity Oscillations experiment on the SOlar and Heliospheric Observatory missions. We analysed the performance of all methods at various levels of solar activity. Results. We show that the GPS method returns accurate values of solar rotation independently of the level of solar activity. In particular, it performs well during periods of high solar activity, when TSI variability displays an irregular pattern, and other methods fail. Furthermore, we show that the GPS and light curve skewness can give constraints on facular and spot contributions to brightness variability. Conclusions. Our results suggest that the GPS method can successfully determine the rotational periods of stars with both regular and non-regular light curves.


2020 ◽  
Vol 633 ◽  
pp. A32 ◽  
Author(s):  
A. I. Shapiro ◽  
E. M. Amazo-Gómez ◽  
N. A. Krivova ◽  
S. K. Solanki

Context. Considerable effort has gone into using light curves observed by such space telescopes as CoRoT, Kepler, and TESS for determining stellar rotation periods. While rotation periods of active stars can be reliably determined, the light curves of many older and less active stars, such as stars that are similar to the Sun, are quite irregular. This hampers the determination of their rotation periods. Aims. We aim to examine the factors causing these irregularities in stellar brightness variations and to develop a method for determining rotation periods for low-activity stars with irregular light curves. Methods. We extended the Spectral And Total Irradiance Reconstruction approach for modeling solar brightness variations to Sun-like stars. We calculated the power spectra of stellar brightness variations for various combinations of parameters that define the surface configuration and evolution of stellar magnetic features. Results. The short lifetime of spots in comparison to the stellar rotation period, as well as the interplay between spot and facular contributions to brightness variations of stars with near solar activity, cause irregularities in their light curves. The power spectra of such stars often lack a peak associated with the rotation period. Nevertheless, the rotation period can still be determined by measuring the period where the concavity of the power spectrum plotted in the log–log scale changes its sign, that is, by identifying the position of the inflection point. Conclusions. The inflection point of the (log–log) power spectrum is found to be a new diagnostic for stellar rotation periods which is shown to work even in cases where the power spectrum shows no peak at the rotation rate.


2019 ◽  
Vol 15 (S354) ◽  
pp. 200-203
Author(s):  
Julia Roquette ◽  
Jerome Bouvier ◽  
Estelle Moraux ◽  
Herve Bouy ◽  
Jonathan Irwin ◽  
...  

AbstractTogether with the stellar rotation, the spotted surfaces of low-mass magnetically active stars produce modulations in their brightness. These modulations can be resolved by photometric variability surveys, allowing direct measurements of stellar spin rates. In this proceedings, we present results of a multisite photometric survey dedicated to the measurement of spin rates in the 30 Myr cluster NGC 3766. Inside the framework of the Monitor Project, the cluster was monitored during 2014 in the i-band by the Wide Field Imager at the MPG/ESO 2.2-m telescope. Data from Gaia-DR2 and grizY photometry from DECam/CTIO were used to identify cluster members. We present spin rates measured for ⁓200 cluster members.


Sign in / Sign up

Export Citation Format

Share Document