scholarly journals On the importance of partial frequency redistribution in modeling the scattering polarization

2014 ◽  
Vol 10 (S305) ◽  
pp. 351-359
Author(s):  
K. N. Nagendra

AbstractIt is well-known that partial frequency redistribution (PRD) is the basic physical mechanism to correctly describe radiative transfer in spectral lines. In the case of polarized line scattering, the PRD becomes particularly important to describe the line-wing polarization, instead of the well-known mechanism of complete redistribution (CRD). Historically, the two-level atom PRD scattering matrices for polarized line scattering were first derived in the 1970's, and later generalized to the case of arbitrary fields in 1997. The latter formulation of the PRD matrices have subsequently been used in the solution of the line transfer equation to successfully model the non-magnetic (resonance scattering) and the magnetic (Hanle scattering) polarization observations. In recent years, using the Kramers-Heisenberg approach, we formulated PRD matrices for various physical mechanisms like quantum interference involving fine- and hyperfine-structure states in a two-term atom. The effect of collisions is included in an approximate way. We have used these PRD matrices to model the observed linear polarization in several interesting lines of the Second Solar Spectrum. In this paper I present a few results which highlight the importance of PRD in the interpretation of the polarized Stokes profiles.

2014 ◽  
Vol 10 (S305) ◽  
pp. 154-158
Author(s):  
K. Sowmya ◽  
K. N. Nagendra ◽  
M. Sampoorna ◽  
J. O. Stenflo

AbstractThe linear polarization in spectral lines produced by coherent scattering is significantly modified by the quantum interference between the atomic states in the presence of a magnetic field. When magnetic fields produce a splitting which is of the order of or greater than the fine or hyperfine structure splittings, we enter the Paschen-Back effect (PBE) regime, in which the magnetic field dependence of the Zeeman splittings and transition amplitudes becomes non-linear. In general, PBE occurs for sufficiently strong fields when the fine structure states are involved and for weak fields in the case of hyperfine structure states. In this work, we apply the recently developed theory of PBE in the atomic fine and hyperfine structure states including the effects of partial frequency redistribution to the case of Li i 6708 Å doublet. We explore the signatures of PBE in a single scattering event and their applicability to the solar magnetic field diagnostics.


2014 ◽  
Vol 10 (S305) ◽  
pp. 234-237
Author(s):  
L. S. Anusha ◽  
K. N. Nagendra ◽  
Han Uitenbroek

AbstractHere we address the importance of frequency cross-redistribution on the scattering polarization of the O i line at 130.2 nm. We compute the polarized profiles of this line with ordinary partial frequency redistribution and cross-redistribution using a two-dimensional radiative transfer code.


1994 ◽  
Vol 144 ◽  
pp. 315-321 ◽  
Author(s):  
M. G. Rovira ◽  
J. M. Fontenla ◽  
J.-C. Vial ◽  
P. Gouttebroze

AbstractWe have improved previous model calculations of the prominence-corona transition region including the effect of the ambipolar diffusion in the statistical equilibrium and energy balance equations. We show its influence on the different parameters that characterize the resulting prominence theoretical structure. We take into account the effect of the partial frequency redistribution (PRD) in the line profiles and total intensities calculations.


Sign in / Sign up

Export Citation Format

Share Document