scholarly journals The Massive stellar Population at the Galactic Center

2016 ◽  
Vol 12 (S329) ◽  
pp. 287-291
Author(s):  
Francisco Najarro ◽  
Diego de la Fuente ◽  
Tom R. Geballe ◽  
Don F. Figer ◽  
D. John Hillier

AbstractWe present results from our ongoing infrared spectroscopic studies of the massive stellar content at the Center of the Milky Way. This region hosts a large number of apparently isolated massive stars as well as three of the most massive resolved young clusters in the Local Group. Our survey seeks to infer the presence of a possible top-heavy recent star formation history and to test massive star formation channels: clusters vs isolation.

2013 ◽  
Vol 9 (S303) ◽  
pp. 252-253
Author(s):  
Francisco Najarro ◽  
Diego de la Fuente ◽  
Tom R. Geballe ◽  
Don F. Figer

AbstractThe Galactic center (GC) region hosts three of the most massive resolved young clusters in the Local Group and constitutes a test bed for studying the star formation history of the region and inferring the possibility of a top-heavy scenario. Further, recent detection of a large number of apparently isolated massive stars within the inner 80 pc of the Galactic center has raised fundamental questions regarding massive star formation in a such a dense and harsh environment. Noting that most of the isolated massive stars have spectral analogs in the Quintuplet cluster, we have undertaken a combined analysis of the infrared spectra of both selected Quintuplet stars and the isolated objects using Gemini spectroscopy. We present preliminary results, aiming at α-elements versus iron abundances, stellar properties, ages and radial velocities which will differentiate the top-heavy and star-formation scenarios.


2009 ◽  
Vol 5 (S262) ◽  
pp. 353-354
Author(s):  
Enrico V. Held ◽  
Eline Tolstoy ◽  
Luca Rizzi ◽  
Mary Cesetti ◽  
Andrew A. Cole ◽  
...  

AbstractWe present the first results of a comprehensive HST study of the star-formation history of Fornax dSph, based on WFPC2 imaging of 7 Fornax fields. Our observations reach the oldest main-sequence turnoffs, allowing us to address fundamental questions of dwarf galaxy evolution, such as the spatial variations in the stellar content, and whether the old stellar population is made up of stars formed in a very early burst or the result of a more continuous star formation.


2006 ◽  
Vol 2 (S235) ◽  
pp. 313-313
Author(s):  
J. Yin ◽  
J.L. Hou ◽  
R.X. Chang ◽  
S. Boissier ◽  
N. Prantzos

Andromeda galaxy (M31,NGC224) is the biggest spiral in the Local Group. By studying the star formation history(SFH) and chemical evolution of M31, and comparing with the Milky Way Galaxy, we are able to understand more about the formation and evolution of spiral galaxies.


1999 ◽  
Vol 192 ◽  
pp. 464-468
Author(s):  
R.E. Schulte-Ladbeck ◽  
U. Hopp ◽  
M. M. Crone

There are no examples of Blue Compact Dwarf (BCD) galaxies known within the Local Group (LG). Multicolor HST/WFPC2 observations of the nearby BCD VII Zw 403 (= UGC 6456) now resolve single stars with the quality (in terms of limiting magnitude and completeness) previously achieved for LG dwarfs from the ground. We use the MI, V - I color-magnitude diagrams (CMDs) of several LG dwarfs as templates to assess the stellar content and star-formation history (SFH) of the BCD VII Zw 403. This is the first BCD for which a clear spatial segregation of the resolved stellar content into a “core-halo” structure is detected: active star formation is observed in the central region of VII Zw 403, while in “Baade's red sheet”, this young population is strikingly absent. If BCD halos are home to dominant ancient stellar populations, then the fossil record conflicts with delayed-format ion scenarios for dwarfs. We present a sketch of the SFH in the core and halo of VII Zw 403.


1998 ◽  
Vol 184 ◽  
pp. 21-22 ◽  
Author(s):  
K. Sellgren ◽  
J. S. Carr ◽  
S. C. Balachandran

The disk of the Milky Way galaxy shows evidence for gas-phase abundances which increase with decreasing radius (Simpson et al. 1995; Afflerbach et al. 1997). Sustained star formation in the center of the Milky Way Galaxy may be fueled by inflow of inner disk gas (Serabyn & Morris 1996), suggesting that Galactic Center (GC) stars may be metal-rich. Measurements of stellar abundances in the GC allow us to explore the chemical evolution of our Galaxy's nucleus and to infer its star formation history.


2008 ◽  
Vol 4 (S258) ◽  
pp. 245-252
Author(s):  
Sebastian L. Hidalgo ◽  
Antonio Aparicio ◽  
Carme Gallart

AbstractWe present a new method to solve for the star-formation history (SFH) of a complex stellar population system from the analysis of the color-magnitude diagram (CMD). The SFH is obtained in four steps: i) computing a synthetic CMD, ii) simulating observational effects, iii) parameterization and sampling of the synthetic and observed CMDs, and iv) solving and averaging the solutions. The consistency and stability of the method have been tested using a mock stellar population.The method has been used to solve the SFH of a set of six isolated Local Group dwarf galaxies observed with HST. The main goal is to probe the effects of cosmological processes, such as reionization in the early star formation, or the ability of SNe feedback to remove gas in small halos, in dwarf galaxies free from environmental effects due to the strong interaction with the host galaxy.


2007 ◽  
Vol 134 (3) ◽  
pp. 1124-1132 ◽  
Author(s):  
Edouard J. Bernard ◽  
Antonio Aparicio ◽  
Carme Gallart ◽  
Carmen P. Padilla-Torres ◽  
Maurizio Panniello

Sign in / Sign up

Export Citation Format

Share Document