iron abundance
Recently Published Documents


TOTAL DOCUMENTS

132
(FIVE YEARS 21)

H-INDEX

24
(FIVE YEARS 5)

2021 ◽  
Vol 5 (12) ◽  
pp. 284
Author(s):  
Richard Monier

Abstract Comparison of high dispersion LWP spectra obtained in 24 hr of monitoring of 21 Com with IUE in April 1991 reveals variations of low excitation Fe ii lines at phase 0.65 of the rotational period (FUV minimum flux) compared to phase 0.18 (FUV maximum flux). All 10 Fe ii lines of UV Multiplets 1 and 62 are consistently stronger at phase 0.65, which shows that the FUV flux minimum can be partially explained to an increase of the disk averaged iron abundance. In contrast, comparison of optical high resolution high signal-to-noise ELODIE spectra of 21 Com taken in 2004 April and separated by about half of the 2 days rotational period, reveals no significant variations of the Fe ii and Fe i lines. The lines monitored in the mid UV are strong low-lying transitions which are probably more sensitive to small abundance gradients over the surface of 21 Com.


Author(s):  
Sudip Chakraborty ◽  
Ajay Ratheesh ◽  
Sudip Bhattacharyya ◽  
John A Tomsick ◽  
Francesco Tombesi ◽  
...  

Abstract We present the broadband spectral analysis of all the six hard, intermediate and soft state NuSTAR observations of the recently discovered transient black hole X-ray binary MAXI J1348-630 during its first outburst in 2019. We first model the data with a combination of a multi-colour disc and a relativistic blurred reflection, and, whenever needed, a distant reflection. We find that this simple model scheme is inadequate in explaining the spectra, resulting in a very high iron abundance. We, therefore, explore the possibility of reflection from a high-density disc. We use two different sets of models to describe the high-density disc reflection: relxill-based reflection models, and reflionx-based ones. The reflionx-based high-density disc reflection models bring down the iron abundance to around the solar value, while the density is found to be $10^{20.3-21.4} \rm cm^{-3}$. We also find evidence of a high-velocity outflow in the form of ∼7.3 keV absorption lines. The consistency between the best-fit parameters for different epochs and the statistical significance of the corresponding model indicates the existence of high-density disc reflection in MAXI J1348-630.


Author(s):  
T Mishenina ◽  
N Basak ◽  
V Adibekyan ◽  
C Soubiran ◽  
V Kovtyukh

Abstract Stellar parameters of 25 planet-hosting stars and abundances of Li, C, O, Na, Mg, Al, S, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Ni, Zn, Y, Zr, Ba, Ce, Pr, Nd, Sm and Eu, were studied based on homogeneous high resolution spectra and uniform techniques. The iron abundance [Fe/H] and key elements (Li, C, O, Mg, Si) indicative of the planet formation, as well as the dependencies of [El/Fe] on Tcond, were analyzed. The iron abundances determined in our sample stars with detected massive planets range within –0.3 < [Fe/H] < 0.4. The behaviour of [C/Fe], [O/Fe], [Mg/Fe] and [Si/Fe] relative to [Fe/H] is consistent with the Galactic Chemical Evolution trends. The mean values of C/O and [C/O] are <C/O> = 0.48 ±0.07 and <[C/O]> = –0.07 ±0.07, which are slightly lower than solar ones. The Mg/Si ratios range from 0.83 to 0.95 for four stars in our sample and from 1.0 to 1.86 for the remaining 21 stars. Various slopes of [El/Fe] vs. Tcond were found. The dependencies of the planetary mass on metallicity, the lithium abundance, the C/O and Mg/Si ratios, and also on the [El/Fe]–Tcond slopes were considered.


Science ◽  
2020 ◽  
Vol 370 (6519) ◽  
pp. 970-973
Author(s):  
Søren S. Larsen ◽  
Aaron J. Romanowsky ◽  
Jean P. Brodie ◽  
Asher Wasserman

Globular clusters (GCs) are dense, gravitationally bound systems of thousands to millions of stars. They are preferentially associated with the oldest components of galaxies, so measurements of their composition can constrain the build-up of chemical elements in galaxies during the early Universe. We report a massive GC in the Andromeda Galaxy (M31), RBC EXT8, that is extremely depleted in heavy elements. Its iron abundance is about 1/800 that of the Sun and about one-third that of the most iron-poor GCs previously known. It is also strongly depleted in magnesium. These measurements challenge the notion of a metallicity floor for GCs and theoretical expectations that massive GCs could not have formed at such low metallicities.


2020 ◽  
Vol 642 ◽  
pp. A173 ◽  
Author(s):  
G. Nowak ◽  
R. Luque ◽  
H. Parviainen ◽  
E. Pallé ◽  
K. Molaverdikhani ◽  
...  

We present the discovery and characterisation of two transiting planets observed by the Transiting Exoplanet Survey Satellite (TESS) orbiting the nearby (d⋆ ≈ 22 pc), bright (J ≈ 9 mag) M3.5 dwarf LTT 3780 (TOI–732). We confirm both planets and their association with LTT 3780 via ground-based photometry and determine their masses using precise radial velocities measured with the CARMENES spectrograph. Precise stellar parameters determined from CARMENES high-resolution spectra confirm that LTT 3780 is a mid-M dwarf with an effective temperature of Teff = 3360 ± 51 K, a surface gravity of log g⋆ = 4.81 ± 0.04 (cgs), and an iron abundance of [Fe/H] = 0.09 ± 0.16 dex, with an inferred mass of M⋆ = 0.379 ± 0.016M⊙ and a radius of R⋆ = 0.382 ± 0.012R⊙. The ultra-short-period planet LTT 3780 b (Pb = 0.77 d) with a radius of 1.35−0.06+0.06 R⊕, a mass of 2.34−0.23+0.24 M⊕, and a bulk density of 5.24−0.81+0.94 g cm−3 joins the population of Earth-size planets with rocky, terrestrial composition. The outer planet, LTT 3780 c, with an orbital period of 12.25 d, radius of 2.42−0.10+0.10 R⊕, mass of 6.29−0.61+0.63 M⊕, and mean density of 2.45−0.37+0.44 g cm−3 belongs to the population of dense sub-Neptunes. With the two planets located on opposite sides of the radius gap, this planetary system is anexcellent target for testing planetary formation, evolution, and atmospheric models. In particular, LTT 3780 c is an ideal object for atmospheric studies with the James Webb Space Telescope (JWST).


2020 ◽  
Vol 497 (3) ◽  
pp. 3149-3165 ◽  
Author(s):  
Gen Chiaki ◽  
John H Wise ◽  
Stefania Marassi ◽  
Raffaella Schneider ◽  
Marco Limongi ◽  
...  

ABSTRACT Carbon-enhanced metal-poor (CEMP) stars are the living fossils holding records of chemical enrichment from early generations of stars. In this work, we perform a set of numerical simulations of the enrichment from a supernova (SN) of a first generation of metal-free (Pop III) star and the gravitational collapse of the enriched cloud, considering all relevant cooling/heating processes and chemical reactions as well as the growth of dust grains. We adopt faint SN models for the first time with progenitor masses MPopIII = 13–$80 \ {\rm M_{\bigodot }}$, which yield C-enhanced abundance patterns ([C/Fe] = 4.57–4.75) through mixing and fallback of innermost layers of the ejecta. This model also considers the formation and destruction of dust grains. We find that the metals ejected by the SN can be partly re-accreted by the same dark matter minihalo, and carbon abundance of the enriched cloud A(C) = 3.80–5.06 is lower than the abundance range of observed CEMP stars (A(C) ≳ 6) because the mass of the metals ejected by faint SNe is smaller than normal core-collapse SNe due to extensive fallback. We also find that cloud fragmentation is induced by gas cooling from carbonaceous grains for $M_{\rm Pop III}= 13 \ {\rm M_{\bigodot }}$ even with the lowest iron abundance [Fe/H] ∼ −9. This leads to the formation of low-mass stars, and these ‘giga metal-poor’ stars can survive until the present-day Universe and may be found by future observations.


2020 ◽  
Vol 497 (4) ◽  
pp. 4423-4435
Author(s):  
Grzegorz Nowak ◽  
Enric Palle ◽  
Davide Gandolfi ◽  
Hans J Deeg ◽  
Teruyuki Hirano ◽  
...  

ABSTRACT We present an independent discovery and detailed characterization of K2-280 b, a transiting low density warm sub-Saturn in a 19.9-d moderately eccentric orbit (e = $0.35_{-0.04}^{+0.05}$ ) from K2 campaign 7. A joint analysis of high precision HARPS, HARPS-N, and FIES radial velocity measurements and K2 photometric data indicates that K2-280 b has a radius of Rb = 7.50 ± 0.44 R⊕ and a mass of Mb = 37.1 ± 5.6 M⊕, yielding a mean density of ρb = $0.48 _{ - 0.10 } ^ { + 0.13 }$ ${\rm g\, cm^{-3}}$. The host star is a mildly evolved G7 star with an effective temperature of Teff = 5500 ± 100 K, a surface gravity of $\log \, g_{\star }$ = 4.21 ± 0.05 (cgs), and an iron abundance of [Fe/H] = ${0.33}\, {\pm }\, {0.08}$ dex, and with an inferred mass of M⋆ = 1.03 ± 0.03 M⊙ and a radius of R⋆ = 1.28 ± 0.07 R⊙. We discuss the importance of K2-280 b for testing formation scenarios of sub-Saturn planets and the current sample of this intriguing group of planets that are absent in the Solar system.


2020 ◽  
Vol 497 (3) ◽  
pp. 3011-3025
Author(s):  
Yiqing Liu

ABSTRACT The mean stellar alpha-to-iron abundance ratio ([α/Fe]) of a galaxy is an indicator of galactic star formation time-scale. It is important for understanding the star formation history of early-type galaxies (ETGs) as their star formation processes have basically stopped. Using the model templates that are made by Vazdekis et al., we apply the pPXF-based spectral fitting method to estimate the [α/Fe] of 196 high-signal-to-noise ratio ETGs from the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey. The velocity dispersions within 1Re (σe) range from 27 to 270 km s−1. We find a flat relation between the mean [α/Fe] within the 1$R_\mathrm{ e}^{\mathrm{ maj}}$ ellipses and log(σe), even if limiting to the massive sample with log(σe/km s−1) > 1.9. However, the relation becomes positive after we exclude the Mg1 feature in our fits, which agrees with the results from the previous work with other stellar population models, albeit with relatively large scatter. It indicates that the Vazdekis models have self-inconsistency and do not actually cover the observations in Mg1. For reference, we also measure the stellar population radial gradients within 1$R_\mathrm{ e}^{\mathrm{ maj}}$ ellipses. Due to the low resolution of age estimations for old objects and the Mg1 issue, the uncertainties of these gradients cannot be neglected.


2020 ◽  
Vol 637 ◽  
pp. A58 ◽  
Author(s):  
Ang Liu ◽  
Paolo Tozzi ◽  
Stefano Ettori ◽  
Sabrina De Grandi ◽  
Fabio Gastaldello ◽  
...  

Aims. We study the chemical evolution of galaxy clusters by measuring the iron mass in the ICM after dissecting the abundance profiles into different components. Methods. We used Chandra archival observations of 186 morphologically regular clusters in the redshift range of [0.04, 1.07]. For each cluster, we computed the azimuthally averaged iron abundance and gas density profiles. In particular, our aim is to identify a central peak in the iron distribution, which is associated with the central galaxy, and an approximately constant plateau reaching the largest observed radii, which is possibly associated with early enrichment that occurred before or shortly after achieving virialization within the cluster. We were able to firmly identify two components in the iron distribution in a significant fraction of the sample simply by relying on the fit of the iron abundance profile. From the abundance and ICM density profiles, we computed the iron mass included in the iron peak and iron plateau, and the gas mass-weighted iron abundance of the ICM out to an extraction radius of 0.4r500 and to r500 by extending the abundance profile as a constant. Results. We find that the iron plateau shows no evolution with redshift. On the other hand, we find a marginal (< 2σ c.l.) decrease with redshift in the iron mass included in the iron peak rescaled by the gas mass. We measure that the fraction of iron peak mass is typically a few percent (∼1%) of the total iron mass within r500. Therefore, since the total iron mass budget is dominated by the plateau, we find consistently that the global gas mass-weighted iron abundance does not evolve significantly across our sample. We were also able to reproduce past claims of evolution in the global iron abundance, which turn out to be due to the use of cluster samples with different selection methods combined with the use of emission-weighted, instead of gas mass-weighted, abundance values. Finally, while the intrinsic scatter in the iron plateau mass is consistent with zero, the iron peak mass exhibits a large scatter, in line with the fact that the peak is produced after the virialization of the halo and depends on the formation history of the hosting cool core and the strength of the associated feedback processes. Conclusions. We conclude that only a spatially resolved approach can resolve the issue of iron abundance evolution in the ICM, reconciling the contradictory results obtained in the last ten years. Evolutionary effects below z ∼ 1 are marginally measurable with present-day data, while at z >  1 the constraints are severely limited by poor knowledge of the high-z cluster population. The path towards a full and comprehensive chemical history of the ICM requires the application of high angular resolution X-ray bolometers and a dramatic increase in the number of faint, extended X-ray sources.


2020 ◽  
Vol 493 (3) ◽  
pp. 4409-4417 ◽  
Author(s):  
Yanting Dong ◽  
Javier A García ◽  
James F Steiner ◽  
Lijun Gou

ABSTRACT 4U 1543-47 is a low-mass X-ray binary that harbours a stellar-mass black hole located in our Milky Way galaxy. In this paper, we revisit seven data sets that were in the Steep Power Law state of the 2002 outburst. The spectra were observed by the Rossi X-ray Timing Explorer. We have carefully modelled the X-ray reflection spectra and made a joint-fit to these spectra with relxill for the reflected emission. We found a moderate black hole spin, which is $0.67_{-0.08}^{+0.15}$ at 90 per cent statistical confidence. Negative and low spins (&lt;0.5) at more than 99 per cent statistical confidence are ruled out. In addition, our results indicate that the model requires a supersolar iron abundance: $5.05_{-0.26}^{+1.21}$, and the inclination angle of the inner disc is $36.3_{-3.4}^{+5.3}$ deg. This inclination angle is appreciably larger than the binary orbital inclination angle (∼21 deg); this difference is possibly a systematic artefact of the artificially low density employed in the reflection model for this X-ray binary system.


Sign in / Sign up

Export Citation Format

Share Document