Sardinia Radio Telescope (SRT) observations of Local Group dwarf galaxies

2017 ◽  
Vol 13 (S336) ◽  
pp. 109-112
Author(s):  
A. Tarchi ◽  
P. Castangia ◽  
G. Surcis ◽  
A. Brunthaler ◽  
K. M. Menten ◽  
...  

AbstractThe dwarf galaxies in the Local Group (LG) reveal a surprising amount of spatial structuring. In particular, almost all non-satellite dwarfs belong to one of two planes that show a very pronounced symmetry. In order to determine if these structures in the LG are dynamically stable or, alternatively, if they only represent transient alignments, proper motion measurements of these galaxies are required. A viable method to derive proper motions is offered by VLBI studies of 22-GHz water (and 6.7-GHz methanol) maser lines in star-forming regions.In 2016, in the framework of the Early Science Program of the Sardinia Radio Telescope (SRT), we have conducted an extensive observational campaign to map the entire optical body of all the LG dwarf galaxies that belong to the two planes, at C and K band, in a search for methanol and water maser emission.Here, we outline the project and present its first results on 3 targets, NGC 6822, IC 1613, and WLM. While no luminous maser emission has been detected in these galaxies, a number of interesting weaker detections has been obtained, associated with particularly active star forming regions. In addition, we have produced deep radio continuum maps for these galaxies, aimed at investigating their star forming activity and providing an improved assessment of star formation rates in these galaxies.

2019 ◽  
Vol 492 (1) ◽  
pp. 45-57
Author(s):  
A Tarchi ◽  
P Castangia ◽  
G Surcis ◽  
A Brunthaler ◽  
C Henkel ◽  
...  

ABSTRACT Almost all dwarf galaxies in the Local Group (LG) that are not satellites of the Milky Way or M 31 belong to either one of two highly symmetric planes. It is still a matter of debate whether these planar structures are dynamically stable or whether they only represent a transient alignment. Proper motions, if they could be measured, could help to discriminate between these scenarios. Such motions could be determined with multi-epoch very long baseline interferometry (VLBI) of sources that show emission from water and methanol at frequencies of 22 and 6.7 GHz, respectively. We report searches for such masers. We have mapped three LG galaxies, NGC 6822, IC 1613, and WLM, in the bands covering the water vapour and methanol lines. These systems are members of the two above-mentioned planes of galaxies. We have produced deep radio continuum (RC) maps and spectral line cubes. The former have been used to identify star-forming regions and to derive global galactic star formation rates (SFRs). These SFRs turn out to be lower than those determined at other wavelengths in two of our sources. This indicates that dwarf galaxies may follow predictions on the RC–SFR relation only in individual regions of enhanced RC emission, but not when considering the entire optical body of the sources. No methanol or water maser emission has been confidently detected, down to line luminosity limits of ∼4 × 10−3 and 10 × 10−3 L⊙, respectively. This finding is consistent with the small sizes, low SFRs, and metallicities of these galaxies.


2004 ◽  
Vol 202 ◽  
pp. 362-364
Author(s):  
A.M.S. Richards ◽  
R. J. Cohen ◽  
M. Crocker ◽  
E. E. Lekht ◽  
V. Samodourov ◽  
...  

Water maser emission from star forming regions has been monitored for several decades using the Puschino radio telescope, showing radial velocity variations consistent with material in Keplerian orbit around protostars. MERLIN and the EVN are now being used to image the 22 GHz emission on au scales and measure proper motions. This will distinguish discs from outflows, and provide an estimate of the central mass and possibly orbiting condensations.


2012 ◽  
Vol 143 (3) ◽  
pp. 74 ◽  
Author(s):  
Luciana Bianchi ◽  
Boryana Efremova ◽  
Paul Hodge ◽  
Philip Massey ◽  
K. A. G. Olsen

2020 ◽  
Vol 501 (2) ◽  
pp. 2363-2377
Author(s):  
Alan W McConnachie ◽  
Clare R Higgs ◽  
Guillaume F Thomas ◽  
Kim A Venn ◽  
Patrick Côté ◽  
...  

ABSTRACT We measure systemic proper motions for distant dwarf galaxies in the Local Group and investigate if these isolated galaxies have ever had an interaction with the Milky Way or M31. We cross-match photometry of isolated, star-forming, dwarf galaxies in the Local Group, taken as part of the Solo survey, with astrometric measurements from Gaia Data Release 2. We find that NGC 6822, Leo A, IC 1613, and WLM have sufficient supergiants with reliable astrometry to derive proper motions. An additional three galaxies (Leo T, Eridanus 2, and Phoenix) are close enough that their proper motions have already been derived using red giant branch stars. Systematic errors in Gaia DR2 are significant for NGC 6822, IC 1613, and WLM. We explore the orbits for these galaxies, and conclude that Phoenix, Leo A, and WLM are unlikely to have interacted with the Milky Way or M31, unless these large galaxies are very massive (${\gtrsim}1.6 \times 10^{12}\, \mathrm{M}_\odot$). We rule out a past interaction of NGC 6822 with M31 at ${\sim}99.99{{\ \rm per\ cent}}$ confidence, and find there is a <10 per cent chance that NGC 6822 has had an interaction with the Milky Way. We examine the likely origins of NGC 6822 in the periphery of the young Local Group, and note that a future interaction of NGC 6822 with the Milky Way or M31 in the next 4 Gyr is essentially ruled out. Our measurements indicate that future Gaia data releases will provide good constraints on the interaction history for the majority of these galaxies.


2009 ◽  
Vol 5 (S266) ◽  
pp. 538-538
Author(s):  
S. Schmeja ◽  
D. A. Gouliermis ◽  
R. S. Klessen ◽  
W. J. G. de Blok ◽  
F. Walter

AbstractStar formation appears to be clumped into a hierarchy of structures, from giant molecular clouds down to individual cores and clusters, which are often hierarchical themselves, showing significant substructure. This has been demonstrated for our Galaxy through the application of sophisticated statistical methods, in particular the nearest-neighbour density and the minimum spanning tree (MST), to different star-forming regions. Here we present our analysis of clustered star formation as demonstrated through the detection of structures of young stellar populations in the dwarf star-forming galaxy NGC 6822.


2007 ◽  
Vol 3 (S242) ◽  
pp. 234-235
Author(s):  
T. Umemoto ◽  
N. Mochizuki ◽  
K. M. Shibata ◽  
D.-G. Roh ◽  
H.-S. Chung

AbstractWe present the results of a mm wavelength methanol maser survey towards massive star forming regions. We have carried out Class II methanol maser observations at 86.6 GHz, 86.9 GHz and 107.0 GHz, simultaneously, using the Nobeyama 45 m telescope. We selected 108 6.7 GHz methanol maser sources with declinations above −25 degrees and fluxes above 20 Jy. The detection limit of maser observations was ~3 Jy. Of the 93 sources surveyed so far, we detected methanol emission in 25 sources (27%) and “maser” emission in nine sources (10%), of which thre “maser” sources are new detections. The detection rate for maser emission is about half that of a survey of the southern sky (Caswell et al. 2000). There is a correlation between the maser flux of 107 GHz and 6.7 GHz/12 GHz emission, but no correlation with the “thermal” (non maser) emission. From results of other molecular line observations, we found that the sources with methanol emission show higher gas temperatures and twice the detection rate of SiO emission. This may suggest that dust evaporation and destruction by shock are responsible for the high abundance of methanol molecules, one of the required physical conditions for maser emission.


1999 ◽  
Vol 16 (1) ◽  
pp. 106-112 ◽  
Author(s):  
Fabian Walter

AbstractHigh resolution HI observations of nearby dwarf galaxies (most of which are situated in the M81 group at a distance of about 3·2 Mpc) reveal that their neutral interstellar medium (ISM) is dominated by hole-like features most of which are expanding. A comparison of the physical properties of these holes with the ones found in more massive spiral galaxies (such as M31 and M33) shows that they tend to reach much larger sizes in dwarf galaxies. This can be understood in terms of the galaxy's gravitational potential. The origin of these features is still a matter of debate. In general, young star forming regions (OB-associations) are held responsible for their formation. This picture, however, is not without its critics and other mechanisms such as the infall of high velocity clouds, turbulent motions or even gamma ray bursters have been recently proposed. Here I will present one example of a supergiant shell in IC 2574 which corroborates the picture that OB associations are indeed creating these structures. This particular supergiant shell is currently the most promising case to study the effects of the combined effects of stellar winds and supernova explosions which shape the neutral interstellar medium of (dwarf) galaxies.


1983 ◽  
Vol 103 ◽  
pp. 443-460
Author(s):  
Holland C. Ford

Recent surveys for planetary nebulae have given the first identifications in Fornax, NGC 6822, M33, IC 10, Leo A, Sextans A, Pegasus, WLM, NGC 404, and M81, and extended the identifications in the SMC, the LMC, and M31. Observations of planetaries have established chemical compositions in old or intermediate age populations in 8 Local Group galaxies. The chemical compositions show that i) the helium abundance is higher in planetary nebulae than in H II regions in the same galaxy, and ii) nitrogen is overabundant relative to H II regions by factors of 4 to 100. Planetary nebulae are not a major source of helium in star-forming galaxies, and are a major source of nitrogen. The planetary in Fornax has a relatively high O abundance, and, together with Fornax's carbon stars, establishes the presence of at least 2 stellar populations. The abundance gradient derived from 3 planetaries in M31 is very shallow, and gives high abundances at ~ 20 kpc. By using planetary nebulae as standard candles, upper and lower distance limits have been set for 10 Local Group candidates, and a new distance estimated for M81.


2002 ◽  
Vol 207 ◽  
pp. 94-104
Author(s):  
Eva K. Grebel

I summarize our knowledge of star clusters and associations in irregular galaxies other than the Magellanic Clouds in the Local Group. Surveys affording complete area coverage at high angular resolution are still lacking. Confirmed globular clusters are known only in NGC 6822 and WLM. Very few dIrrs contain populous or sparse open clusters. There is a pronounced deficiency of intermediate-age and young clusters. Apart from parent galaxy mass, the lack of interactions may be a key reason for the lack of cluster formation in the dIrrs. All dIrrs have one or several short-lived OB associations in the star-forming regions in their centers.


Sign in / Sign up

Export Citation Format

Share Document