supernova explosions
Recently Published Documents


TOTAL DOCUMENTS

513
(FIVE YEARS 63)

H-INDEX

56
(FIVE YEARS 9)

2022 ◽  
Vol 924 (1) ◽  
pp. 38
Author(s):  
Takami Kuroda ◽  
Tobias Fischer ◽  
Tomoya Takiwaki ◽  
Kei Kotake

Abstract We investigate observable signatures of a first-order quantum chromodynamics (QCD) phase transition in the context of core-collapse supernovae. To this end, we conduct axially symmetric numerical relativity simulations with multi-energy neutrino transport, using a hadron–quark hybrid equation of state (EOS). We consider four nonrotating progenitor models, whose masses range from 9.6 to 70 M ⊙. We find that the two less-massive progenitor stars (9.6 and 11.2 M ⊙) show a successful explosion, which is driven by the neutrino heating. They do not undergo the QCD phase transition and leave behind a neutron star. As for the more massive progenitor stars (50 and 70 M ⊙), the proto-neutron star (PNS) core enters the phase transition region and experiences the second collapse. Because of a sudden stiffening of the EOS entering to the pure quark matter regime, a strong shock wave is formed and blows off the PNS envelope in the 50 M ⊙ model. Consequently the remnant becomes a quark core surrounded by hadronic matter, leading to the formation of the hybrid star. However, for the 70 M ⊙ model, the shock wave cannot overcome the continuous mass accretion and it readily becomes a black hole. We find that the neutrino and gravitational wave (GW) signals from supernova explosions driven by the hadron–quark phase transition are detectable for the present generation of neutrino and GW detectors. Furthermore, the analysis of the GW detector response reveals unique kHz signatures, which will allow us to distinguish this class of supernova explosions from failed and neutrino-driven explosions.


2021 ◽  
Vol 2103 (1) ◽  
pp. 012011
Author(s):  
E A Bogomolov ◽  
G I Vasilyev ◽  
W Menn

Abstract Analysis of the isotopic composition of nuclei in galactic cosmic rays (GCR) in the orbital experiment of the PAMELA collaboration makes it possible to study the problems of the origin and propagation of cosmic rays in the Galaxy. The data of the PAMELA magnetic spectrometer, due to their high statistical and methodological accuracy, ensured significant progress in the study of the isotopic composition of light nuclei from H to Be in GCR in the energy range ~ 0.1-1 GeV/nucleon and for the first time made it possible to estimate the contribution to GCR of Local Interstellar Sources (LIS) from close (∼ 100 pc) of recent (~ million years) supernova explosions. To date, the isotopic composition of beryllium nuclei in GCR has been measured only for 7Be./9Be, 10Be/9Be ratios in the energy range of ∼ 100 MeV/nucleon in the space experiments IMP 7/8, Voyager, Ulysses, ACE/CRIS and for 10Be/9Be in balloon experiment with a superconducting magnet ISOMAX-98 for energies 0.2-1.0 and 1.1-2.0 GeV/nucleon. In this work, using flight data PAMELA 2006-2014, on the rigidity of the detected nuclei and their velocity (time-of-flight analysis and ionization losses in the multilayer calorimeter of the instrument), a new analysis of the isotopic composition of beryllium nuclei in the energy range of ~ 0.1-1.4 GeV/nucleon has been carried out. The results of isotopic analysis of beryllium nuclei in GCR (spectra 7Be, 9Be, 10Be and 7Be/9Be, 10Be/9Be - ratio depending on the rigidity and energy of nuclei) in comparison with the existing measurement and calculation data will be presented.


2021 ◽  
Vol 508 (1) ◽  
pp. 1321-1345
Author(s):  
Vincent Tatischeff ◽  
John C Raymond ◽  
Jean Duprat ◽  
Stefano Gabici ◽  
Sarah Recchia

ABSTRACT Galactic cosmic rays (GCRs) are thought to be accelerated in strong shocks induced by massive star winds and supernova explosions sweeping across the interstellar medium. But the phase of the interstellar medium from which the CRs are extracted has remained elusive until now. Here, we study in detail the GCR source composition deduced from recent measurements by the AMS-02, Voyager 1, and SuperTIGER experiments to obtain information on the composition, ionization state, and dust content of the GCR source reservoirs. We show that the volatile elements of the CR material are mainly accelerated from a plasma of temperature ≳ 2 MK, which is typical of the hot medium found in Galactic superbubbles energized by the activity of massive star winds and supernova explosions. Another GCR component, which is responsible for the overabundance of 22Ne, most likely arises from acceleration of massive star winds in their termination shocks. From the CR-related gamma-ray luminosity of the Milky Way, we estimate that the ion acceleration efficiency in both supernova shocks and wind termination shocks is of the order of 10−5. The GCR source composition also shows evidence for a preferential acceleration of refractory elements contained in interstellar dust. We suggest that the GCR refractories are also produced in superbubbles, from shock acceleration and subsequent sputtering of dust grains continuously incorporated into the hot plasma through thermal evaporation of embedded molecular clouds. Our model explains well the measured abundances of all primary and mostly primary CRs from H to Zr, including the overabundance of 22Ne.


2021 ◽  
Author(s):  
Maciej Dabrowny ◽  
Nicola Giacobbo ◽  
Davide Gerosa

AbstractFollowing the collapse of their cores, some of the massive binary stars that populate our Universe are expected to form merging binaries composed of black holes and neutron stars. Gravitational-wave observations of the resulting compact binaries can reveal precious details on the inner workings of the supernova mechanism and the subsequent formation of compact objects. Within the framework of the population-synthesis code mobse, we present the implementation of a new supernova model that relies on the compactness of the collapsing star. The model has two free parameters, namely the compactness threshold that separates the formation of black holes and that of neutron stars, and the fraction of the envelope that falls back onto the newly formed black holes. We compare this model extensively against other prescriptions that are commonly used in binary population synthesis. We find that the cleanest signatures of the role of the pre-supernova stellar compactness are (1) the relative formation rates of the different kinds of compact binaries, which mainly depend on the compactness threshold parameter, and (2) the location of the upper edge of the mass gap between the lightest black holes and the heaviest neutron stars, which mainly depends on the fallback fraction.


Author(s):  
Y.-Z. Cai ◽  
A. Pastorello ◽  
M. Fraser ◽  
M. T. Botticella ◽  
N. Elias-Rosa ◽  
...  

2021 ◽  
Vol 27 (S1) ◽  
pp. 2782-2784
Author(s):  
Luc Lajaunie ◽  
Manish Sanghani ◽  
William Rickard ◽  
Silver Sung-Yun Hsiao ◽  
Zan Peeters ◽  
...  

Author(s):  
F. Frontera ◽  
E. Virgilli ◽  
C. Guidorzi ◽  
P. Rosati ◽  
R. Diehl ◽  
...  

AbstractNuclear astrophysics, and particularly nuclear emission line diagnostics from a variety of cosmic sites, has remained one of the least developed fields in experimental astronomy, despite its central role in addressing a number of outstanding questions in modern astrophysics. Radioactive isotopes are co-produced with stable isotopes in the fusion reactions of nucleosynthesis in supernova explosions and other violent events, such as neutron star mergers. The origin of the 511 keV positron annihilation line observed in the direction of the Galactic Center is a 50-year-long mystery. In fact, we still do not understand whether its diffuse large-scale emission is entirely due to a population of discrete sources, which are unresolved with current poor angular resolution instruments at these energies, or whether dark matter annihilation could contribute to it. From the results obtained in the pioneering decades of this experimentally-challenging window, it has become clear that some of the most pressing issues in high-energy astrophysics and astro-particle physics would greatly benefit from significant progress in the observational capabilities in the keV-to-MeV energy band. Current instrumentation is in fact not sensitive enough to detect radioactive and annihilation lines from a wide variety of phenomena in our and nearby galaxies, let alone study the spatial distribution of their emission. In this White Paper (WP), we discuss how unprecedented studies in this field will become possible with a new low-energy gamma-ray space experiment, called ASTENA (Advanced Surveyor of Transient Events and Nuclear Astrophysics), which combines new imaging, spectroscopic and polarization capabilities. In a separate WP (Guidorzi et al. 39), we discuss how the same mission concept will enable new groundbreaking studies of the physics of Gamma–Ray Bursts and other high-energy transient phenomena over the next decades.


Science ◽  
2021 ◽  
Vol 372 (6543) ◽  
pp. 742-745
Author(s):  
A. Wallner ◽  
M. B. Froehlich ◽  
M. A. C. Hotchkis ◽  
N. Kinoshita ◽  
M. Paul ◽  
...  

Half of the chemical elements heavier than iron are produced by the rapid neutron capture process (r-process). The sites and yields of this process are disputed, with candidates including some types of supernovae (SNe) and mergers of neutron stars. We search for two isotopic signatures in a sample of Pacific Ocean crust—iron-60 (60Fe) (half-life, 2.6 million years), which is predominantly produced in massive stars and ejected in supernova explosions, and plutonium-244 (244Pu) (half-life, 80.6 million years), which is produced solely in r-process events. We detect two distinct influxes of 60Fe to Earth in the last 10 million years and accompanying lower quantities of 244Pu. The 244Pu/60Fe influx ratios are similar for both events. The 244Pu influx is lower than expected if SNe dominate r-process nucleosynthesis, which implies some contribution from other sources.


Author(s):  
Ekaterina I Makarenko ◽  
Andrei P Igoshev ◽  
A F Kholtygin

Abstract Stars of spectral types O and B produce neutron stars (NSs) after supernova explosions. Most of NSs are strongly magnetised including normal radio pulsars with B∝1012 G and magnetars with B∝1014 G. A fraction of 7-12 per cent of massive stars are also magnetised with B∝103 G and some are weakly magnetised with B∝1 G. It was suggested that magnetic fields of NSs could be the fossil remnants of magnetic fields of their progenitors. This work is dedicated to study this hypothesis. First, we gather all modern precise measurements of surface magnetic fields in O, B and A stars. Second, we estimate parameters for log-normal distribution of magnetic fields in B stars and found μB = 2.83 ± 0.1 log10 (G), σB = 0.65 ± 0.09 for strongly magnetised and μB = 0.14 ± 0.5 log10 (G), $\sigma =0.7_{-0.27}^{+0.57}$ for weakly magnetised. Third, we assume that the magnetic field of pulsars and magnetars have 2.7 DEX difference in magnetic fields and magnetars represent 10 per cent of all young NSs and run population synthesis. We found that it is impossible to simultaneously reproduce pulsars and magnetars populations if the difference in their magnetic fields is 2.7 DEX. Therefore, we conclude that the simple fossil origin of the magnetic field is not viable for NSs.


Sign in / Sign up

Export Citation Format

Share Document