scholarly journals The Local Group Dwarf Galaxies. The Star Formation Histories derived using the Long Period Variable Stars

2018 ◽  
Vol 14 (S344) ◽  
pp. 125-129
Author(s):  
Elham Saremi ◽  
Atefeh Javadi ◽  
Jacco Th. van Loon ◽  
Habib Khosroshahi ◽  
Sara Rezaei kh ◽  
...  

AbstractDwarf galaxies in the Local Group (LG) represent a distinct as well as diverse family of tracers of the earliest phases of galaxy assembly and the processing resulting from galactic harrassment. Their stellar populations can be resolved and used as probes of the evolution of their host galaxy. In this regard, we present the first reconstruction of the star formation history (SFH) of them using the most evolved AGB stars that are long period variable (LPV). LPV stars trace stellar populations as young as ∼ 30 Myr to as old as the oldest globular clusters. For the nearby, relatively massive and interacting gas-rich dwarf galaxies, the Magellanic Clouds, we found that the bulk of the stars formed ∼ 10 Gyr ago for the LMC, while the strongest episode of star formation in the SMC occurred a few Gyr later. A peak in star formation around 0.7 Gyr ago in both Clouds is likely linked to their recent interaction. The Andromeda satellite pair NGC147/185 show different histories; the main epoch of star formation for NGC 185 occurred 8.3 Gyr ago, followed by a much lower, but relatively constant star formation rate (SFR). In the case of NGC 147, the SFR peaked only 6.9 Gyr ago, staying intense until ∼ 3 Gyr ago. Star formation in the isolated gas-rich dwarf galaxy IC 1613 has proceeded at a steady rate over the past 5 Gyr, without any particular dominant epoch. Due to lack of sufficient data, we have conducted an optical monitoring survey at the Isaac Newton Telescope (INT) of 55 dwarf galaxies in the LG to reconstruct the SFH of them uniformly. The observations are made over ten epochs, spaced approximately three months apart, as the luminosity of LPV stars varies on timescales of months to years. The system of galactic satellites of the large Andromeda spiral galaxy (M31) forms one of the key targets of our monitoring survey. We present the first results in the And I dwarf galaxy, where we discovered 116 LPVs among over 10,000 stars.

2021 ◽  
Vol 923 (2) ◽  
pp. 164
Author(s):  
Elham Saremi ◽  
Atefeh Javadi ◽  
Mahdieh Navabi ◽  
Jacco Th. van Loon ◽  
Habib G. Khosroshahi ◽  
...  

Abstract An optical monitoring survey in the nearby dwarf galaxies was carried out with the 2.5 m Isaac Newton Telescope. 55 dwarf galaxies and four isolated globular clusters in the Local Group were observed with the Wide Field Camera. The main aims of this survey are to identify the most evolved asymptotic giant branch stars and red supergiants at the endpoint of their evolution based on their pulsational instability, use their distribution over luminosity to reconstruct the star-formation history (SFH), quantify the dust production and mass loss from modeling the multiwavelength spectral energy distributions, and relate this to luminosity and radius variations. In this second of a series of papers, we present the methodology used to estimate SFH based on long-period variable (LPV) stars and then derive it for Andromeda I (And I) dwarf galaxy as an example of the survey. Using our identified 59 LPV candidates within two half-light radii of And I and Padova stellar evolution models, we estimated the SFH of this galaxy. A major epoch of star formation occurred in And I peaking around 6.6 Gyr ago, reaching 0.0035 ± 0.0016 M ⊙ yr−1 and only slowly declining until 1–2 Gyr ago. The presence of some dusty LPVs in this galaxy corresponds to a slight increase in recent star formation peaking around 800 Myr ago. We evaluate a quenching time around 4 Gyr ago (z < 0.5), which makes And I a late-quenching dSph. A total stellar mass (16 ± 7) × 106 M ⊙ is calculated within two half-light radii of And I for a constant metallicity Z = 0.0007.


2018 ◽  
Vol 14 (S344) ◽  
pp. 77-80
Author(s):  
Seyed Azim Hashemi ◽  
Atefeh Javadi ◽  
Jacco Th. van Loon

AbstractDetermining the star formation history (SFH) is key to understand the formation and evolution of dwarf galaxies. Recovering the SFH in resolved galaxies is mostly based on deep colour–magnitude diagrams (CMDs), which trace the signatures of multiple evolutionary stages of their stellar populations. In distant and unresolved galaxies, the integrated light of the galaxy can be decomposed, albeit made difficult by an age–metallicity degeneracy. Another solution to determine the SFH of resolved galaxies is based on evolved stars; these luminous stars are the most accessible tracers of the underlying stellar populations and can trace the entire SFH. Here we present a novel method based on long period variable (LPV) evolved asymptotic giant branch (AGB) stars and red supergiants (RSGs). We applied this method to reconstruct the SFH for IC1613, an irregular dwarf galaxy at a distance of 750 kpc. Our results provide an independent confirmation that no major episode of star formation occurred in IC1613 over the past 5 Gyr.


2019 ◽  
Vol 490 (4) ◽  
pp. 5538-5550 ◽  
Author(s):  
Saundra M Albers ◽  
Daniel R Weisz ◽  
Andrew A Cole ◽  
Andrew E Dolphin ◽  
Evan D Skillman ◽  
...  

ABSTRACT We present the star formation history (SFH) of the isolated (D ∼ 970 kpc) Local Group dwarf galaxy Wolf–Lundmark–Melotte (WLM) measured from colour–magnitude diagrams (CMDs) constructed from deep Hubble Space Telescope imaging. Our observations include a central ($0.5 \, r_h$) and outer field ($0.7 \, r_h$) that reach below the oldest main-sequence turn-off. WLM has no early dominant episode of star formation: 20 per cent of its stellar mass formed by ∼12.5 Gyr ago ($z$ ∼ 5). It also has an SFR that rises to the present with 50 per cent of the stellar mass within the most recent 5 Gyr ($z$ &lt; 0.7). There is evidence of a strong age gradient: the mean age of the outer field is 5 Gyr older than the inner field despite being only 0.4 kpc apart. Some models suggest such steep gradients are associated with strong stellar feedback and dark-matter core creation. The SFHs of real isolated dwarf galaxies and those from the Feedback in Realistic Environment suite are in good agreement for M⋆($z$ = 0) ∼ 107–109M⊙, but in worse agreement at lower masses ($M_{\star }(z=0) \sim 10^5\!-\!10^7 \, \mathrm{M}_{\odot }$). These differences may be explainable by systematics in the models (e.g. reionization model) and/or observations (HST field placement). We suggest that a coordinated effort to get deep CMDs between HST/JWST (crowded central fields) and WFIRST (wide-area halo coverage) is the optimal path for measuring global SFHs of isolated dwarf galaxies.


2018 ◽  
Vol 14 (S343) ◽  
pp. 512-513
Author(s):  
Maryam Torki ◽  
Atefeh Javadi ◽  
Jacco Th. van Loon ◽  
Hossein Safari

AbstractThe determination of the star formation history is a key goal for understanding galaxies. In this regard, nearby galaxies in the Local Group offer us a complete suite of galactic environment that is perfect for studying the connection between stellar populations and galaxy evolution. In this paper, we present the star formation history of M31 using long period variable stars that are prime targets for studying the galaxy formation and evolution because of their evolutionary phase. In this method, at first, we convert the near-infrared K-band magnitude of evolved stars to mass and age and from this we reconstruct the star formation and evolution of the galaxy.


1999 ◽  
Vol 118 (5) ◽  
pp. 2245-2261 ◽  
Author(s):  
Carme Gallart ◽  
Wendy L. Freedman ◽  
Antonio Aparicio ◽  
Giampaolo Bertelli ◽  
Cesare Chiosi

2018 ◽  
Vol 14 (S344) ◽  
pp. 29-37
Author(s):  
Andrew A. Cole

AbstractLocal Group dwarf galaxies are a unique astrophysical laboratory because they are the only objects in which we can reliably and precisely characterize the star formation histories of low-mass galaxies going back to the epoch of reionization. There are of order 100 known galaxies less massive than the Small Magellanic Cloud within ~1 Megaparsec of the Milky Way, with a vide variety of star formation history, gas content, and mass to light ratios. In this overview the current understanding of the formation and evolution of low-mass galaxies across cosmic time will be presented, and the possibility of drawing links between the properties of individual systems and the broader Local Group and cosmological context will be discussed. Local Group dwarfs will remain a uniquely powerful testbed to constrain the properties of dark matter and to evaluate the performance of simulations for the foreseeable future.


2016 ◽  
Vol 466 (2) ◽  
pp. 1764-1776 ◽  
Author(s):  
Roya Hamedani Golshan ◽  
Atefeh Javadi ◽  
Jacco Th. van Loon ◽  
Habib Khosroshahi ◽  
Elham Saremi

2004 ◽  
Vol 193 ◽  
pp. 70-74 ◽  
Author(s):  
Jan Snigula ◽  
Claus Gössl ◽  
Ulrich Hopp ◽  
Heinz Barwig

AbstractDwarf galaxies in the local group provide a unique astrophysical laboratory. Despite their proximity some of these systems still lack reliable distance determinations as well as studies of their stellar content and star formation history. We present first results of our survey of variable stars in a sample of six local group dwarf irregular galaxies. Taking the Leo A dwarf galaxy as an example we describe observational strategies and data reduction. We discuss the light curves of two newly found Cepheids and place them into the context of a previously derived P-L relation. Finally we discuss the LPV content of Leo A.


1999 ◽  
Vol 192 ◽  
pp. 464-468
Author(s):  
R.E. Schulte-Ladbeck ◽  
U. Hopp ◽  
M. M. Crone

There are no examples of Blue Compact Dwarf (BCD) galaxies known within the Local Group (LG). Multicolor HST/WFPC2 observations of the nearby BCD VII Zw 403 (= UGC 6456) now resolve single stars with the quality (in terms of limiting magnitude and completeness) previously achieved for LG dwarfs from the ground. We use the MI, V - I color-magnitude diagrams (CMDs) of several LG dwarfs as templates to assess the stellar content and star-formation history (SFH) of the BCD VII Zw 403. This is the first BCD for which a clear spatial segregation of the resolved stellar content into a “core-halo” structure is detected: active star formation is observed in the central region of VII Zw 403, while in “Baade's red sheet”, this young population is strikingly absent. If BCD halos are home to dominant ancient stellar populations, then the fossil record conflicts with delayed-format ion scenarios for dwarfs. We present a sketch of the SFH in the core and halo of VII Zw 403.


Sign in / Sign up

Export Citation Format

Share Document