MODAL LOGIC WITHOUT CONTRACTION IN A METATHEORY WITHOUT CONTRACTION

2019 ◽  
Vol 12 (4) ◽  
pp. 685-701
Author(s):  
PATRICK GIRARD ◽  
ZACH WEBER

AbstractStandard reasoning about Kripke semantics for modal logic is almost always based on a background framework of classical logic. Can proofs for familiar definability theorems be carried out using a nonclassical substructural logic as the metatheory? This article presents a semantics for positive substructural modal logic and studies the connection between frame conditions and formulas, via definability theorems. The novelty is that all the proofs are carried out with a noncontractive logic in the background. This sheds light on which modal principles are invariant under changes of metalogic, and provides (further) evidence for the general viability of nonclassical mathematics.

1980 ◽  
Vol 45 (2) ◽  
pp. 221-236 ◽  
Author(s):  
W. J. Blok

AbstractModal logics are studied in their algebraic disguise of varieties of so-called modal algebras. This enables us to apply strong results of a universal algebraic nature, notably those obtained by B. Jónsson. It is shown that the degree of incompleteness with respect to Kripke semantics of any modal logic containing the axiom □p→P or containing an axiom of the form □mp↔□m+1p for some natural number m is . Furthermore, we show that there exists an immediate predecessor of classical logic (axiomatized by p↔□p) which is not characterized by any finite algebra. The existence of modal logics having immediate predecessors is established. In contrast with these results we prove that the lattice of extensions of S4 behaves much better: a logic extending S4 is characterized by a finite algebra iff it has finitely many extensions and any such logic has only finitely many immediate predecessors, all of which are characterized by a finite algebra.


2017 ◽  
Vol 12 (2) ◽  
Author(s):  
Marilynn Johnson

In An Introduction to Non-Classical Logic: From If to Is Graham Priest (2008) presents branching rules in Free Logic, Variable Domain Modal Logic, and Intuitionist Logic. I propose a simpler, non-branching rule to replace Priest’s rule for universal instantiation in Free Logic, a second, slightly modified version of this rule to replace Priest’s rule for universal instantiation in Variable Domain Modal Logic, and third and fourth rules, further modifying the second rule, to replace Priest’s branching universal and particular instantiation rules in Intuitionist Logic. In each of these logics the proposed rule leads to tableaux with fewer branches. In Intuitionist logic, the proposed rules allow for the resolution of a particular problem Priest grapples with throughout the chapter. In this paper, I demonstrate that the proposed rules can greatly simplify tableaux and argue that they should be used in place of the rules given by Priest.


10.29007/hgbj ◽  
2018 ◽  
Author(s):  
Nick Bezhanishvili

The method of canonical formulas is a powerful tool for investigating intuitionistic and modal logics. In this talk I will discuss an algebraic approach to this method. I will mostly concentrate on the case of intuitionistic logic. But I will also review the case of modal logic and possible generalizations to substructural logic.


Author(s):  
Timothy Williamson

Detective work is an important tool in philosophy. ‘Deducing’ explains the difference between valid and sound arguments. An argument is valid if its premises are true but is only sound if the conclusion is true. The Greek philosophers identified disjunctive syllogism—the idea that if something is not one thing, it must be another. This relates to another philosophical concept, the ‘law of the excluded middle’. An abduction is a form of logical inference which attempts to find the most likely explanation. Modal logic, an extension of classical logic, is a popular branch of logic for philosophical arguments.


1998 ◽  
Vol 63 (2) ◽  
pp. 623-637 ◽  
Author(s):  
Wendy MacCaull

AbstractIn this paper we give relational semantics and an accompanying relational proof theory for full Lambek calculus (a sequent calculus which we denote by FL). We start with the Kripke semantics for FL as discussed in [11] and develop a second Kripke-style semantics, RelKripke semantics, as a bridge to relational semantics. The RelKripke semantics consists of a set with two distinguished elements, two ternary relations and a list of conditions on the relations. It is accompanied by a Kripke-style valuation system analogous to that in [11]. Soundness and completeness theorems with respect to FL hold for RelKripke models. Then, in the spirit of the work of Orlowska [14], [15], and Buszkowski and Orlowska [3], we develop relational logic RFL. The adjective relational is used to emphasize the fact that RFL has a semantics wherein formulas are interpreted as relations. We prove that a sequent Γ → α in FL is provable if and only if a translation, t(γ1 ● … ● γn ⊃ α)ευu, has a cut-complete fundamental proof tree. This result is constructive: that is, if a cut-complete proof tree for t(γ1 ● … ● γn ⊃ α)ευu is not fundamental, we can use the failed proof search to build a relational countermodel for t(γ1 ● … ● γn ⊃ α)ευu and from this, build a RelKripke countermodel for γ1 ● … ● γn ⊃ α. These results allow us to add FL, the basic substructural logic, to the list of those logics of importance in computer science with a relational proof theory.


2019 ◽  
Vol 12 (2) ◽  
pp. 255-270 ◽  
Author(s):  
PAVEL NAUMOV ◽  
JIA TAO

AbstractModal logic S5 is commonly viewed as an epistemic logic that captures the most basic properties of knowledge. Kripke proved a completeness theorem for the first-order modal logic S5 with respect to a possible worlds semantics. A multiagent version of the propositional S5 as well as a version of the propositional S5 that describes properties of distributed knowledge in multiagent systems has also been previously studied. This article proposes a version of S5-like epistemic logic of distributed knowledge with quantifiers ranging over the set of agents, and proves its soundness and completeness with respect to a Kripke semantics.


2003 ◽  
Vol 68 (4) ◽  
pp. 1403-1414 ◽  
Author(s):  
H. Kushida ◽  
M. Okada

AbstractIt is well known that the modal logic S5 can be embedded in the classical predicate logic by interpreting the modal operator in terms of a quantifier. Wajsberg [10] proved this fact in a syntactic way. Mints [7] extended this result to the quantified version of S5; using a purely proof-theoretic method he showed that the quantified S5 corresponds to the classical predicate logic with one-sorted variable. In this paper we extend Mints' result to the basic modal logic S4; we investigate the correspondence between the quantified versions of S4 (with and without the Barcan formula) and the classical predicate logic (with one-sorted variable). We present a purely proof-theoretic proof-transformation method, reducing an LK-proof of an interpreted formula to a modal proof.


1985 ◽  
Vol 50 (1) ◽  
pp. 102-109 ◽  
Author(s):  
Michael C. Nagle ◽  
S. K. Thomason

Our purpose is to delineate the extensions (normal and otherwise) of the propositional modal logic K5. We associate with each logic extending K5 a finitary index, in such a way that properties of the logics (for example, inclusion, normality, and tabularity) become effectively decidable properties of the indices. In addition we obtain explicit finite axiomatizations of all the extensions of K5 and an abstract characterization of the lattice of such extensions.This paper refines and extends the Ph.D. thesis [2] of the first-named author, who wishes to acknowledge his debt to Brian F. Chellas for his considerable efforts in directing the research culminating in [2] and [3]. We also thank W. J. Blok and Gregory Cherlin for observations which greatly simplified the proofs of Theorem 3 and Corollary 10.By a logic we mean a set of formulas in the countably infinite set Var of propositional variables and the connectives ⊥, →, and □ (other connectives being used abbreviatively) which contains all the classical tautologies and is closed under detachment and substitution. A logic is classical if it is also closed under RE (from A↔B infer □A ↔□B) and normal if it is classical and contains □ ⊤ and □ (P → q) → (□p → □q). A logic is quasi-classical if it contains a classical logic and quasi-normal if it contains a normal logic. Thus a quasi-normal logic is normal if and only if it is classical, and if and only if it is closed under RN (from A infer □A).


2019 ◽  
Vol 30 (2) ◽  
pp. 549-560 ◽  
Author(s):  
Mikhail Rybakov ◽  
Dmitry Shkatov

Abstract We investigate the relationship between recursive enumerability and elementary frame definability in first-order predicate modal logic. On one hand, it is well known that every first-order predicate modal logic complete with respect to an elementary class of Kripke frames, i.e. a class of frames definable by a classical first-order formula, is recursively enumerable. On the other, numerous examples are known of predicate modal logics, based on ‘natural’ propositional modal logics with essentially second-order Kripke semantics, that are either not recursively enumerable or Kripke incomplete. This raises the question of whether every Kripke complete, recursively enumerable predicate modal logic can be characterized by an elementary class of Kripke frames. We answer this question in the negative, by constructing a normal predicate modal logic which is Kripke complete, recursively enumerable, but not complete with respect to an elementary class of frames. We also present an example of a normal predicate modal logic that is recursively enumerable, Kripke complete, and not complete with respect to an elementary class of rooted frames, but is complete with respect to an elementary class of frames that are not rooted.


Sign in / Sign up

Export Citation Format

Share Document