scholarly journals Canonical formulas via locally finite reducts and generalized dualities

10.29007/hgbj ◽  
2018 ◽  
Author(s):  
Nick Bezhanishvili

The method of canonical formulas is a powerful tool for investigating intuitionistic and modal logics. In this talk I will discuss an algebraic approach to this method. I will mostly concentrate on the case of intuitionistic logic. But I will also review the case of modal logic and possible generalizations to substructural logic.


2005 ◽  
Vol 11 (3) ◽  
pp. 428-438 ◽  
Author(s):  
Roman Kontchakov ◽  
Agi Kurucz ◽  
Michael Zakharyaschev

AbstractWe prove that the two-variable fragment of first-order intuitionistic logic is undecidable, even without constants and equality. We also show that the two-variable fragment of a quantified modal logic L with expanding first-order domains is undecidable whenever there is a Kripke frame for L with a point having infinitely many successors (such are, in particular, the first-order extensions of practically all standard modal logics like K, K4, GL, S4, S5, K4.1, S4.2, GL.3, etc.). For many quantified modal logics, including those in the standard nomenclature above, even the monadic two-variable fragments turn out to be undecidable.



1983 ◽  
Vol 48 (4) ◽  
pp. 941-964 ◽  
Author(s):  
W.J. Blok ◽  
P. Köhler

A well-known result, going back to the twenties, states that, under some reasonable assumptions, any logic can be characterized as the set of formulas satisfied by a matrix 〈, F〉, where is an algebra of the appropriate type, and F a subset of the domain of , called the set of designated elements. In particular, every quasi-classical modal logic—a set of modal formulas, containing the smallest classical modal logic E, which is closed under the inference rules of substitution and modus ponens—is characterized by such a matrix, where now is a modal algebra, and F is a filter of . If the modal logic is in fact normal, then we can do away with the filter; we can study normal modal logics in the setting of varieties of modal algebras. This point of view was adopted already quite explicitly in McKinsey and Tarski [8]. The observation that the lattice of normal modal logics is dually isomorphic to the lattice of subvarieties of a variety of modal algebras paved the road for an algebraic study of normal modal logics. The algebraic approach made available some general results from Universal Algebra, notably those obtained by Jónsson [6], and thereby was able to contribute new insights in the realm of normal modal logics [2], [3], [4], [10].The requirement that a modal logic be normal is rather a severe one, however, and many of the systems which have been considered in the literature do not meet it. For instance, of the five celebrated modal systems, S1–S5, introduced by Lewis, S4 and S5 are the only normal ones, while only SI fails to be quasi-classical. The purpose of this paper is to generalize the algebraic approach so as to be applicable not just to normal modal logics, but to quasi-classical modal logics in general.



2016 ◽  
Vol 15 (08) ◽  
pp. 1650149 ◽  
Author(s):  
Said El Baghdadi ◽  
Marco Fontana ◽  
Muhammad Zafrullah

Let [Formula: see text] be an integral domain with quotient field [Formula: see text]. Call an overring [Formula: see text] of [Formula: see text] a subring of [Formula: see text] containing [Formula: see text] as a subring. A family [Formula: see text] of overrings of [Formula: see text] is called a defining family of [Formula: see text], if [Formula: see text]. Call an overring [Formula: see text] a sublocalization of [Formula: see text], if [Formula: see text] has a defining family consisting of rings of fractions of [Formula: see text]. Sublocalizations and their intersections exhibit interesting examples of semistar or star operations [D. D. Anderson, Star operations induced by overrings, Comm. Algebra 16 (1988) 2535–2553]. We show as a consequence of our work that domains that are locally finite intersections of Prüfer [Formula: see text]-multiplication (respectively, Mori) sublocalizations turn out to be Prüfer [Formula: see text]-multiplication domains (PvMDs) (respectively, Mori); in particular, for the Mori domain case, we reobtain a special case of Théorème 1 of [J. Querré, Intersections d’anneaux intègers, J. Algebra 43 (1976) 55–60] and Proposition 3.2 of [N. Dessagnes, Intersections d’anneaux de Mori — exemples, Port. Math. 44 (1987) 379–392]. We also show that, more than the finite character of the defining family, it is the finite character of the star operation induced by the defining family that causes the interesting results. As a particular case of this theory, we provide a purely algebraic approach for characterizing P vMDs as a subclass of the class of essential domains (see also Theorem 2.4 of [C. A. Finocchiaro and F. Tartarone, On a topological characterization of Prüfer [Formula: see text]-multiplication domains among essential domains, preprint (2014), arXiv:1410.4037]).



1992 ◽  
Vol 16 (3-4) ◽  
pp. 231-262
Author(s):  
Philippe Balbiani

The beauty of modal logics and their interest lie in their ability to represent such different intensional concepts as knowledge, time, obligation, provability in arithmetic, … according to the properties satisfied by the accessibility relations of their Kripke models (transitivity, reflexivity, symmetry, well-foundedness, …). The purpose of this paper is to study the ability of modal logics to represent the concepts of provability and unprovability in logic programming. The use of modal logic to study the semantics of logic programming with negation is defended with the help of a modal completion formula. This formula is a modal translation of Clack’s formula. It gives soundness and completeness proofs for the negation as failure rule. It offers a formal characterization of unprovability in logic programs. It characterizes as well its stratified semantics.



2018 ◽  
Vol 28 (5) ◽  
pp. 851-880
Author(s):  
Arnon Avron ◽  
Anna Zamansky

Abstract Paraconsistent logics are logics that, in contrast to classical and intuitionistic logic, do not trivialize inconsistent theories. In this paper we take a paraconsistent view on two famous modal logics: B and S5. We use for this a well-known general method for turning modal logics to paraconsistent logics by defining a new (paraconsistent) negation as $\neg \varphi =_{Def} \sim \Box \varphi$ (where $\sim$ is the classical negation). We show that while that makes both B and S5 members of the well-studied family of paraconsistent C-systems, they differ from most other C-systems in having the important replacement property (which means that equivalence of formulas implies their congruence). We further show that B is a very robust C-system in the sense that almost any axiom which has been considered in the context of C-systems is either already a theorem of B or its addition to B leads to a logic that is no longer paraconsistent. There is exactly one notable exception, and the result of adding this exception to B leads to the other logic studied here, S5.



2019 ◽  
Vol 13 (4) ◽  
pp. 720-747
Author(s):  
SERGEY DROBYSHEVICH ◽  
HEINRICH WANSING

AbstractWe present novel proof systems for various FDE-based modal logics. Among the systems considered are a number of Belnapian modal logics introduced in Odintsov & Wansing (2010) and Odintsov & Wansing (2017), as well as the modal logic KN4 with strong implication introduced in Goble (2006). In particular, we provide a Hilbert-style axiom system for the logic $BK^{\square - } $ and characterize the logic BK as an axiomatic extension of the system $BK^{FS} $. For KN4 we provide both an FDE-style axiom system and a decidable sequent calculus for which a contraction elimination and a cut elimination result are shown.



2014 ◽  
Vol 8 (1) ◽  
pp. 178-191 ◽  
Author(s):  
GURAM BEZHANISHVILI ◽  
DAVID GABELAIA ◽  
JOEL LUCERO-BRYAN

AbstractIt is a classic result (McKinsey & Tarski, 1944; Rasiowa & Sikorski, 1963) that if we interpret modal diamond as topological closure, then the modal logic of any dense-in-itself metric space is the well-known modal system S4. In this paper, as a natural follow-up, we study the modal logic of an arbitrary metric space. Our main result establishes that modal logics arising from metric spaces form the following chain which is order-isomorphic (with respect to the ⊃ relation) to the ordinal ω + 3:$S4.Gr{z_1} \supset S4.Gr{z_2} \supset S4.Gr{z_3} \supset \cdots \,S4.Grz \supset S4.1 \supset S4.$It follows that the modal logic of an arbitrary metric space is finitely axiomatizable, has the finite model property, and hence is decidable.



1999 ◽  
Vol 64 (1) ◽  
pp. 99-138 ◽  
Author(s):  
Marcus Kracht ◽  
Frank Wolter

AbstractThis paper shows that non-normal modal logics can be simulated by certain polymodal normal logics and that polymodal normal logics can be simulated by monomodal (normal) logics. Many properties of logics are shown to be reflected and preserved by such simulations. As a consequence many old and new results in modal logic can be derived in a straightforward way, sheding new light on the power of normal monomodal logic.



Dialogue ◽  
1974 ◽  
Vol 13 (3) ◽  
pp. 505-514 ◽  
Author(s):  
Charles G. Morgan

In an attempt to “purify” logic of existential presuppositions, attention has recently focused on modal logics, where one usually assumes that at least one possible world exists. Systems very analogous to some of the standard modal systems have been developed which drop this presupposition. We will here treat the removal of the existential assumption from Brouwerian modal logic and discuss the relationship of the system so derived to other modal systems.



1995 ◽  
Vol 60 (1) ◽  
pp. 266-288 ◽  
Author(s):  
V. V. Rybakov

AbstractWe consider structural completeness in modal logics. The main result is the necessary and sufficient condition for modal logics over K4 to be hereditarily structurally complete: a modal logic λ is hereditarily structurally complete iff λ is not included in any logic from the list of twenty special tabular logics. Hence there are exactly twenty maximal structurally incomplete modal logics above K4 and they are all tabular.



Sign in / Sign up

Export Citation Format

Share Document