Anisotropy of magnetic susceptibility fabrics in syntectonic plutons as tectonic strain markers: the example of the Canso pluton, Meguma Terrane, Nova Scotia

Author(s):  
Keith Benn

ABSTRACTThe anisotropy of magnetic susceptibility (AMS) is widely and routinely used to measure the preferred orientations of Fe-rich minerals in undeformed and weakly deformed granite plutons. The interpretation of the mapped AMS fabrics depends on rock-textural observations, on the map patterns of the fabrics in plutons, and on comparisons of the pluton fabrics to tectonic structures in the country rocks. The AMS may document emplacement-flow related fabrics, but the emplacement fabrics may be reworked or completely overprinted by rather weak tectonic strains of the magma mush or the cooling pluton, especially in syntectonic intrusions. The Late Devonian Canso granite pluton is an excellent example of overprinting of emplacement fabrics by weak tectonic strains. The Canso pluton was emplaced ca. 370 Ma along the boundary between the Meguma and Avalon tectonic terranes, in the northern Appalachian orogen. The AMS was mapped along two traverses that cross the pluton and that are perpendicular to the terrane boundary. Textural evidence suggests the rocks underwent very modest post-full crystallisation strains. The AMS records the dextral transcurrent shearing that occurred on the terrane boundary during emplacement and cooling of the Canso pluton, supporting interpretations that weakly deformed syntectonic granites can be used as indicators of regional bulk kinematics. AMS fabrics in Late Devonian granites of the Meguma Terrane suggest partitioning of the non-coaxial shearing into the terrane bounding fault, with pure-shear dominated deformation further from the fault. Numerical simulations suggest that the kinematics recorded by the fabrics in the Canso pluton was simple-shear, or transpression or transpression with small components of pure shear oriented perpendicular to the bounding shear zone.

2021 ◽  
Author(s):  
Sandra B. Ramírez-García ◽  
Luis M. Alva-Valdivia

<p>Magnetite formation of serpentinized ultramafic rocks leads to variations in the magnetic properties of serpentinites; however, magnetite precipitation is still on debate.</p><p>In this work, we analyzed 60 cores of ultramafic rocks with a variety of serpentinization degrees. These rocks belong to the ultramafic-mafic San Juan de Otates complex in Guanajuato, Mexico. Geochemical studies have been previously conducted, enabling us to compare changes in the magnetic properties against the chemical variations generated by the serpentinization process. By studying the density and magnetic properties such as anisotropy of magnetic susceptibility, hysteresis curves as well as magnetic and temperature-dependent susceptibility and, we were able to identify the relationship between magnetic content and serpentinization degree, the predominant magnetic carrier, and to what extent the magnetite grain size depends on the serpentinization.  Variations in these parameters allowed us to better constrain the temperature at which serpentinization occurred, the generation of other Fe-rich phases such as Fe-brucite and/or Fe-rich serpentine as well as distinctive rock textures formed at different serpentinization degrees.</p>


1963 ◽  
Vol 68 (1) ◽  
pp. 279-291 ◽  
Author(s):  
S. Uyeda ◽  
M. D. Fuller ◽  
J. C. Belshé ◽  
R. W. Girdler

2018 ◽  
Vol 216 (2) ◽  
pp. 1043-1061 ◽  
Author(s):  
Teresa Román-Berdiel ◽  
Antonio M Casas-Sainz ◽  
Belén Oliva-Urcia ◽  
Pablo Calvín ◽  
Juan José Villalaín

Sign in / Sign up

Export Citation Format

Share Document