terrane accretion
Recently Published Documents


TOTAL DOCUMENTS

151
(FIVE YEARS 24)

H-INDEX

34
(FIVE YEARS 2)

2022 ◽  
Vol 578 ◽  
pp. 117298
Author(s):  
Hangyu Liu ◽  
N. Ryan McKenzie ◽  
Cody L. Colleps ◽  
Wei Chen ◽  
Yuancan Ying ◽  
...  

2021 ◽  
Author(s):  
Brandon Bishop ◽  
Linda Warren ◽  
Pablo Aravena ◽  
Sungwon Cho ◽  
Lillian Soto-Cordero ◽  
...  
Keyword(s):  

Minerals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1011
Author(s):  
Jeffrey S. Hannon ◽  
Craig Dietsch ◽  
Warren D. Huff ◽  
Davidson Garway

Cretaceous strata preserved in Wyoming contain numerous large bentonite deposits formed from the felsic ash of volcanic eruptions, mainly derived from Idaho batholith magmatism. These bentonites preserve a near-continuous 40 m.y. chronology of volcanism and their whole-rock and mineral chemistry has been used to document igneous processes and reconstruct the history of Idaho magmatism as emplacement migrated across the Laurentian margin. Using LA-ICP-MS, we analyzed the U-Pb ages and Hf isotopic compositions of nearly 700 zircon grains from 44 bentonite beds from the Bighorn Basin, Wyoming. Zircon populations contain magmatic autocrysts and antecrysts which can be linked to the main pulses of the Idaho batholith and xenocrysts ranging from approx. 250 Ma to 1.84 Ga from country rocks and basement source terranes. Initial εHf compositions of Phanerozoic zircons are diverse, with compositions ranging from −26 to nearly +12. Based on temporal trends in zircon ages and geochemistry, four distinct periods of plutonic emplacement are recognized during the Mid- to Late Cretaceous that follow plutonic emplacement across the Laurentian suture zone in western Idaho and into western Montana with the onset of Farallon slab shallowing. Our data demonstrate the utility of using zircons in preserved tephra to track the regional-scale evolution of convergent margins related to terrane accretion and the spatial migration of magmatism related to changes in subduction dynamics.


Author(s):  
Nathan Hayward ◽  
Suzanne Paradis

A new 3-D inversion strategy is applied to new compilations of gravity and magnetic data, to reassess the role of crustal lineaments in the development of the western Laurentian margin, Selwyn basin and associated sediment-hosted Zn-Pb deposits. The region’s history is obscured by multiple tectonic overprints including terrane accretion, plutonism, and thrust faulting. Regionally continuous, broadly NE-trending crustal lineaments including the Liard line, Fort Norman structure, and Leith Ridge fault, were interpreted as having had long-standing influence on craton, margin, and sedimentary basin development. An ENE-trending lineament, Mackenzie River, traced from the Misty Creek Embayment to Great Bear Lake, is interpreted as the southern edge of a cratonic promontory. The location of the Liard line, associated with a transfer fault that bounds the Macdonald Platform promontory, is refined. New geophysical results support the continuity of the Fort Norman structure below the Selwyn basin, but limited evidence exists for the Leith Ridge fault in this area. A NW-trending lineament that bounds the craton is interpreted as a crustal manifestation of lithospheric thinning of the Laurentian margin, as echoed by a change in the depth of the lithosphere-asthenosphere boundary. The structure delimits the eastern extent of mid-Late Cretaceous granitic intrusions and is straddled by Mississippi Valley-type Zn-Pb occurrences, following their palinspastic restoration. Clastic-dominated Zn-Pb occurrences are aligned along another NW-trending lineament interpreted to be associated with a shallowing of lower crustal rocks.


2021 ◽  
pp. 1-20
Author(s):  
Lauro Cézar M. De Lira Santos ◽  
Roberto G. de Oliveira ◽  
Geysson de A. Lages ◽  
Elton L. Dantas ◽  
Fabrício Caxito ◽  
...  

2021 ◽  
Vol 560 ◽  
pp. 116783
Author(s):  
Yunfeng Chen ◽  
Yu Jeffrey Gu ◽  
Farhanah Mohammed ◽  
Jingchuan Wang ◽  
Mauricio D. Sacchi ◽  
...  

Lithosphere ◽  
2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Xiao-Qiang Liu ◽  
Chuan-Lin Zhang ◽  
Haibo Zou ◽  
Qian Wang ◽  
Xiao-Shu Hao ◽  
...  

Abstract The Western Kunlun-Pamir-Karakorum (WKPK) at the northwestern Tibetan Plateau underwent long-term terrane accretion from the Paleozoic to the Cenozoic. Within this time span, four phases of magmatism occurred in WKPK during the Early Paleozoic, Triassic-Jurassic, Early Cretaceous, and Cenozoic. These voluminous magmatic rocks contain critical information on the evolution of the Tethys Oceans. In this contribution, we provide field observations, petrography, ages, whole-rock elemental and Sr-Nd isotopic compositions, and zircon in situ Lu-Hf isotopes of the Triassic-Jurassic granitoids and pegmatites from the Dahongliutan in Western Kunlun and Turuke area at the Pamir Plateau, in an attempt to constrain their petrogenesis and to decipher a more detailed Paleo-Tethys evolution process. The Dahongliutan pluton is composed of diorites (ca. 210 Ma) and monzogranite (ca. 200 Ma). The diorites have moderate SiO2 (56.77–62.22 wt. %), variable Mg# (46–49), and low Cr (34.4–50.6 ppm) and Ni contents (7.0–14.5 ppm). They show LREE-enriched patterns (LaN/YbN=4.3–17), with variable negative Eu anomalies (0.63–0.91) and variable ratios of Nb/La (0.27–0.97). Isotopically, the diorites display enriched whole-rock εNdt (-5.43 to -7.67) and negative to positive zircon εHft values (-6.6 to 0.4). They were most likely generated by melting of a subduction-modified mantle source with subsequent assimilation and fractional crystallization. The Turuke monzogranites (ca. 202–197 Ma) have S-type granite characteristics and are characterized by high SiO2 (70.36–76.12 wt. %) and A/CNK values (1.19–1.36), variable LREE-enriched patterns (LaN/YbN=8.87–14.40), negative Eu anomaly (0.07–0.56), relatively uniform whole-rock εNdt (-10.49 to -11.22), and variable negative zircon εHft values (-10.7 to -1.3). They were probably generated by muscovite-dehydration melting of dominantly metapelitic sources. The widespread pegmatites (ca. 195 Ma) at the Dahongliutan area record an extensional setting after the collision of Karakorum with the South Kunlun-Tianshuihai terrane. Combining our new data with the previous studies, we propose a divergent double-sided subduction of the Paleo-Tethys Ocean (243–208 Ma) and a gradual closure of the Paleo-Tethys Ocean from east (ca. 200 Ma) to west (ca. 180 Ma) to explain the Triassic-Jurassic tectono-magmatism in the WKPK.


Sign in / Sign up

Export Citation Format

Share Document