Wideband split-ring antenna arrays based on substrate integrated waveguide for Ka-band applications

Author(s):  
Yunfeng Dong ◽  
Vitaliy Zhurbenko ◽  
Kyriakos Kaslis ◽  
Jeppe M. Bjørstorp ◽  
Tom K. Johansen

Abstract This paper presents wideband split-ring antenna arrays based on substrate integrated waveguide (SIW) for Ka-band (26.5–40 GHz) applications. The antenna array is fed by a 2.92 mm coaxial connector (K-connector) and the power is equally distributed to each split-ring resonator. The designed coplanar waveguide (CPW), SIW, CPW-to-SIW transition, coaxial-to-CPW transition, and two-stage SIW power divider are described in detail. By using a thin Rogers 6002 substrate with silver epoxy-filled vias, a transition prototype is designed, fabricated, and tested in a back-to-back configuration. A wideband split-ring resonator is developed as a single element and four possible arrangements of antenna arrays are introduced. By combining the designed components and routing paths, two full layouts of the antenna arrays with four split-ring resonators are addressed. As a demonstrator, a 2×2 antenna array prototype in a compact format is designed, fabricated, and tested. The fabricated antenna array achieves a measured directivity of 15.0 dBi with a fractional bandwidth of 23.0% centered at 30.5 GHz.

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Tahir Ejaz ◽  
Hamood Ur Rahman ◽  
T. Tauqeer ◽  
Adnan Masood ◽  
Tahir Zaidi

Microwave resonators are widely used for numerous applications including communication, biomedical and chemical applications, material testing, and food grading. Split-ring resonators in both planar and nonplanar forms are a simple structure which has been in use for several decades. This type of resonator is characterized with low cost, ease of fabrication, moderate quality factor, low external noise interference, high stability, and so forth. Due to these attractive features and ease in handling, nonplanar form of structure has been utilized for material characterization in 1–5 GHz range. Resonant frequency and quality factor are two important parameters for determination of material properties utilizing perturbation theory. Shield made of conducting material is utilized to enclose split-ring resonator which enhances quality factor. This work presents a novel technique to develop shield around a predesigned nonplanar split-ring resonator to yield optimized quality factor. Based on this technique and statistical analysis regression equations have also been formulated for resonant frequency and quality factor which is a major outcome of this work. These equations quantify dependence of output parameters on various factors of shield made of different materials. Such analysis is instrumental in development of devices/designs where improved/optimum result is required.


Sign in / Sign up

Export Citation Format

Share Document