scholarly journals A note on Mathieu functions

1957 ◽  
Vol 3 (3) ◽  
pp. 132-134 ◽  
Author(s):  
M. Bell

The Mathieu functions of integral order [1] are the solutions with period π or 2π of the equationThe eigenvalues associated with the functions ceN and seN, where N is a positive integer, denoted by aN and bN respectively, reduce toaN = bN = N2when q is zero. The quantities aN and bN can be expanded in powers of q, but the explicit construction of high order coefficients is very tedious. In some applications the quantity of most interest is aN – bN, which may be called the “width of the unstable zone“. It is the object of this note to derive a general formula for the leading term in the expansion of this quantity, namelySuppose first that N is an odd integer. Then there is an expansionwhereThese functions π satisfyandOn Substituting (3) in (1), one obtains the algebraic equationwhereExplicitly,{11} = q{lm} = 0 otherwise.

1930 ◽  
Vol 49 ◽  
pp. 210-223 ◽  
Author(s):  
Sydney Goldstein

An asymptotic formula has recently been given for the characteristic numbers of the Mathieu equation From tabular values, it will be seen that the formula provides good numerical approximations to the characteristic numbers of integral order; but as pointed out by Ince, it provides better approximations to the characteristic numbers of order (m + ½), where m is a positive integer or zero. In this paper we shall first attempt to find out why this should be so, and then go on to show that the formula is probably an asymptotic expansion, in the Poincaré sense, for any characteristic number. A new asymptotic formula is then found for the difference between two characteristic numbers.


1963 ◽  
Vol 59 (4) ◽  
pp. 735-737
Author(s):  
A. S. Meligy ◽  
E. M. EL Gazzy

In a previous paper (3) one of us reported an expansion for the exponential integralin terms of Bessel functions. In this note, we shall obtain the more general formulawhere n is any positive integer, γ is Euler's constant andIt reduces to that in (3) when n = 1.


1961 ◽  
Vol 5 (1) ◽  
pp. 35-40 ◽  
Author(s):  
R. A. Rankin

For any positive integers n and v letwhere d runs through all the positive divisors of n. For each positive integer k and real x > 1, denote by N(v, k; x) the number of positive integers n ≦ x for which σv(n) is not divisible by k. Then Watson [6] has shown that, when v is odd,as x → ∞; it is assumed here and throughout that v and k are fixed and independent of x. It follows, in particular, that σ (n) is almost always divisible by k. A brief account of the ideas used by Watson will be found in § 10.6 of Hardy's book on Ramanujan [2].


1904 ◽  
Vol 24 ◽  
pp. 233-239 ◽  
Author(s):  
Hugh Marshall

When thio-urea is treated with suitable oxidising agents in presence of acids, salts are formed corresponding to the general formula (CSN2H4)2X2:—Of these salts the di-nitrate is very sparingly soluble, and is precipitated on the addition of nitric acid or a nitrate to solutions of the other salts. The salts, as a class, are not very stable, and their solutions decompose, especially on warming, with formation of sulphur, thio-urea, cyanamide, and free acid. A corresponding decomposition results immediately on the addition of alkali, and this constitutes a very characteristic reaction for these salts.


1964 ◽  
Vol 4 (2) ◽  
pp. 179-194 ◽  
Author(s):  
J. C. Butcher

An (explicit) Runge-Kutta process is a means of numerically solving the differential equation , at the point x = x0+h, where y, f may be vectors.


1955 ◽  
Vol 7 ◽  
pp. 347-357 ◽  
Author(s):  
D. H. Lehmer

This paper is concerned with the numbers which are relatively prime to a given positive integerwhere the p's are the distinct prime factors of n. Since these numbers recur periodically with period n, it suffices to study the ϕ(n) numbers ≤n and relatively prime to n.


1968 ◽  
Vol 9 (2) ◽  
pp. 146-151 ◽  
Author(s):  
F. J. Rayner

Letkbe any algebraically closed field, and denote byk((t)) the field of formal power series in one indeterminatetoverk. Letso thatKis the field of Puiseux expansions with coefficients ink(each element ofKis a formal power series intl/rfor some positive integerr). It is well-known thatKis algebraically closed if and only ifkis of characteristic zero [1, p. 61]. For examples relating to ramified extensions of fields with valuation [9, §6] it is useful to have a field analogous toKwhich is algebraically closed whenkhas non-zero characteristicp. In this paper, I prove that the setLof all formal power series of the form Σaitei(where (ei) is well-ordered,ei=mi|nprt,n∈ Ζ,mi∈ Ζ,ai∈k,ri∈ Ν) forms an algebraically closed field.


1953 ◽  
Vol 1 (3) ◽  
pp. 119-120 ◽  
Author(s):  
Fouad M. Ragab

§ 1. Introductory. The formula to be established iswhere m is a positive integer,and the constants are such that the integral converges.


1963 ◽  
Vol 6 (2) ◽  
pp. 70-74 ◽  
Author(s):  
F. M. Ragab

It is proposed to establish the two following integrals.where n is a positive integer, x is real and positive, μi and ν are complex, and Δ (n; a) represents the set of parameterswhere n is a positive integer and x is real and positive.


Sign in / Sign up

Export Citation Format

Share Document