Potential-difference surface infrared spectroscopy under forced hydrodynamic flow conditions: control and elimination of adsorbate solution-phase interferences

1991 ◽  
Vol 63 (15) ◽  
pp. 1603-1606 ◽  
Author(s):  
Joseph D. Roth ◽  
Michael J. Weaver
1992 ◽  
Vol 2 (8) ◽  
pp. 1565-1569
Author(s):  
S. Vollmar ◽  
J. A. M. S. Duarte

1995 ◽  
Vol 15 (1) ◽  
Author(s):  
Priya K. Gopalan ◽  
David A. Jones ◽  
Larry V. McIntire ◽  
C. Wayne Smith

2020 ◽  
Author(s):  
Jan-Pascal Boos ◽  
Benjamin-Silas Gilfedder ◽  
Hassan Elagami ◽  
Sven Frei

<p>Although a major part of marine microplastic (MP) pollution originates from rivers and streams, the mechanistic behavior of MP in fluvial systems is only poorly understood. MP enter fluvial systems from e.g. waste water treatment plant (WWTP) effluents, sewer overflows during heavy rain events, agricultural runoff, aerial input/atmospheric fallout, road runoff or via fragmentation of plastic litter. As part of this project we want to investigate the hydrodynamic transport mechanisms that control the behavior and re-distribution of MP in open channel flow and the streambed sediments. Hydrodynamic conditions in open channel flow are represented in an experimental flume environment.  Different porous media materials (e.g. aqua beads, glass beads and sand) are used in the flume experiments to shape typical bed form structures such as riffle-pool sequences, ripples and dunes. The aim of this experimental setup is to create hydrodynamic flow conditions such as hydraulic jumps, low and high flow velocity environments for which the transport and sedimentation behavior of MP can be investigated under realistic conditions. Hydrodynamic flow conditions in the flume are characterized using a Laser-Doppler-Anemometry (LDA) and Particle Image Velocimetry (PIV). Detection and tracking of fluorescent MP-particles in open channel flow and in porous media will be achieved with a fluorescence-camera-system.</p>


1997 ◽  
Vol 51 (4) ◽  
pp. 519-525 ◽  
Author(s):  
F. Ozanam ◽  
C. Da Fonseca ◽  
A. Venkateswara Rao ◽  
J.-N. Chazalviel

The anodic dissolution of p-Si has been investigated by in situ infrared spectroscopy. The combination of potential-difference and electromodulated spectroscopies allows for the acquisition of a rather complete picture of the various regimes of the dissolution. After a review of general principles for studying electrochemical interfaces, a study of the interfacial oxide layer formed in the electropolishing regime is presented. Quantitative analysis shows that the thickness and quality of the oxide (density and defect content) depend upon electrode potential. Free-carrier absorption detected in electromodulated spectra shows that the blocking character of the oxide is correlated with the buildup of a stoichiometric oxide of low defectivity at sufficiently positive potentials. Furthermore, the dynamic response to the modulation reveals that oxides formed at weak positive potentials interact with electrolyte species through electro-induced adsorptions/desorptions on charged SiOH sites. At more positive potentials, charge is transported across the oxide by charged defects which could be associated with tricoordinated, positively charged SiO species. Finally, results obtained during porous silicon formation at weak positive potentials are presented. Potential-difference spectroscopy indicates that the electrode exhibits a very large specific surface area, and that the surface is covered by SiH bonds. Electromodulated infrared spectroscopy reveals that the SiH species are generated upon anodic current flowing and that the breaking of these bonds is the rate-limiting step of the anodic reaction. These unexpected results have given rise to the elaboration of new microscopic models for the direct anodic dissolution of silicon in fluoride electrolytes.


1996 ◽  
Vol 28 (3) ◽  
pp. 331-339 ◽  
Author(s):  
R. O. Thomsen ◽  
I. Lerche

2016 ◽  
Author(s):  
Carey D. Nadell ◽  
Deirdre Ricaurte ◽  
Jing Yan ◽  
Knut Drescher ◽  
Bonnie L. Bassler

AbstractBacteria often live in biofilms, which are microbial communities surrounded by a secreted extracellular matrix. Here, we demonstrate that hydrodynamic flow and matrix organization interact to shape competitive dynamics inPseudomonas aeruginosabiofilms. Irrespective of initial frequency, in competition with matrix mutants, wild type cells always increase in relative abundance in straight-tunnel microfluidic devices under simple flow regimes. By contrast, in microenvironments with complex, irregular flow profiles - which are common in natural environments - wild type matrix-producing and isogenic non-producing strains can coexist. This result stems from local obstruction of flow by wild-type matrix producers, which generates regions of near-zero flow speed that allow matrix mutants to locally accumulate. Our findings connect the evolutionary stability of matrix production with the hydrodynamics and spatial structure of the surrounding environment, providing a potential explanation for the variation in biofilm matrix secretion observed among bacteria in natural environments.Impact StatementThe feedback between hydrodynamic flow conditions and biofilm spatial architecture drives competition inP. aeruginosabiofilms, and can explain the variation in biofilm production observed among bacteria in natural environments.


Author(s):  
Burcu Kaplan Türköz ◽  
Anastassia Zakhariouta ◽  
Muhsincan Sesen ◽  
Alpay Taralp ◽  
Ali Koşar

In this initial study, the effect of hydrodynamic flow on lysozyme structure and function was investigated using a microchannel device. Protein was subjected to bubbly cavitation as well as noncavitating flow conditions at pH 4.8 and 25 °C. Interestingly, time course analyses indicated that the secondary structure content, the hydrodynamic diameter, and enzymatic activity of lysozyme were unaffected by cavitation. However, noncavitating flow conditions did induce a decrease of the hydrodynamic diameter. The corresponding structural change was subtle to the extent that bioactivity was marginally suppressed. Moreover, native diameter and bioactivity could be fully restored following a brief period of ultrasonication. The findings encouraged further study of various hydrodynamic flow conditions in order to better ascertain the potential risks and benefits of invasive hydrodynamic cavitation in medicine. The results also served to highlight the counter-intuitive notion that proteins need not necessarily be denatured in high-shear media, risks that typically correlate well with forcefully agitated solutions.


Sign in / Sign up

Export Citation Format

Share Document