In situ Spectroelectrochemical Study of the Anodic Dissolution of Silicon by Potential-Difference and Electromodulated FT-IR Spectroscopy

1997 ◽  
Vol 51 (4) ◽  
pp. 519-525 ◽  
Author(s):  
F. Ozanam ◽  
C. Da Fonseca ◽  
A. Venkateswara Rao ◽  
J.-N. Chazalviel

The anodic dissolution of p-Si has been investigated by in situ infrared spectroscopy. The combination of potential-difference and electromodulated spectroscopies allows for the acquisition of a rather complete picture of the various regimes of the dissolution. After a review of general principles for studying electrochemical interfaces, a study of the interfacial oxide layer formed in the electropolishing regime is presented. Quantitative analysis shows that the thickness and quality of the oxide (density and defect content) depend upon electrode potential. Free-carrier absorption detected in electromodulated spectra shows that the blocking character of the oxide is correlated with the buildup of a stoichiometric oxide of low defectivity at sufficiently positive potentials. Furthermore, the dynamic response to the modulation reveals that oxides formed at weak positive potentials interact with electrolyte species through electro-induced adsorptions/desorptions on charged SiOH sites. At more positive potentials, charge is transported across the oxide by charged defects which could be associated with tricoordinated, positively charged SiO species. Finally, results obtained during porous silicon formation at weak positive potentials are presented. Potential-difference spectroscopy indicates that the electrode exhibits a very large specific surface area, and that the surface is covered by SiH bonds. Electromodulated infrared spectroscopy reveals that the SiH species are generated upon anodic current flowing and that the breaking of these bonds is the rate-limiting step of the anodic reaction. These unexpected results have given rise to the elaboration of new microscopic models for the direct anodic dissolution of silicon in fluoride electrolytes.

1982 ◽  
Vol 36 (4) ◽  
pp. 361-368 ◽  
Author(s):  
Larry F. Wieserman ◽  
David M. Hercules

This study compares the properties of γ-alumina, silica, and titania using ESCA and in situ FT-IR. The FWHM's of the O1s and metal 2p ESCA peaks increased systematically from titania to γ alumina; the O1s/metal 2p ESCA peak area ratios were nearly equal for γ-alumina and silica. For titania, however, the value was half that obtained for γ-alumina. In situ FT-IR showed hydroxyl bands with increasing frequencies from titania to silica. Alumina and titania form carbonate-type structures after exposure to CO at elevated temperatures. Silica exhibited no additional bands after CO treatment that could be assigned to physically adsorbed CO or carbonate-type structures. At 100°C, there is a direct correlation between the specific surface area and the intensity of infrared absorbance of the free-hydroxyl and the hydrogen-bonded hydroxyl bands for silica. The intensities of the infrared bands due to matrix modes were not affected by surface area.


Author(s):  
Carlos Fonseca ◽  
François Ozanam ◽  
Jean-Noël Chazalviel
Keyword(s):  
Ft Ir ◽  

2020 ◽  
Vol 13 (1) ◽  
pp. 183-199 ◽  
Author(s):  
Yirui Zhang ◽  
Yu Katayama ◽  
Ryoichi Tatara ◽  
Livia Giordano ◽  
Yang Yu ◽  
...  

Carbonate oxidation via dehydrogenation on LiNi0.8Co0.1Mn0.1O2 at voltages as low as 3.8 VLi was revealed by in situ FT-IR measurements.


2004 ◽  
Vol 563 (1) ◽  
pp. 3-8 ◽  
Author(s):  
R. Outemzabet ◽  
M. Cherkaoui ◽  
F. Ozanam ◽  
N. Gabouze ◽  
N. Kesri ◽  
...  

2015 ◽  
Vol 103 (8) ◽  
Author(s):  
Hilary P. Emerson ◽  
Brian A. Powell

AbstractPrevious studies have shown that mineral surfaces may facilitate the reduction of plutonium though the mechanisms of the reduction are still unknown. The objective of this study is to use batch sorption and attenuated total reflectance Fourier transform infrared spectroscopy experiments to observe the surface-mediated reduction of plutonium on hematite nanoparticles. These techniques allow for in situ measurement of reduction of plutonium with time and may lead to a better understanding of the mechanisms of surface mediated reduction of plutonium. For the first time, ATR FT-IR peaks for Pu(VI) sorbed to hematite are measured at ∼ 916 cm


Sign in / Sign up

Export Citation Format

Share Document