Low-Dimensional Nanostructure Based Flexible Photodetectors: Device Configuration, Functional Design, Integration, and Applications

Author(s):  
La Li ◽  
Chuqiao Hu ◽  
Guozhen Shen
Author(s):  
Amitabha Mukerjee ◽  
Madan Mohan Dabbeeru

In the widespread endeavour to standardize a vocabulary for design, the semantics for the terms, especially at the detailed levels, are often defined based on the exigencies of the implementation. In human usage, each symbol has a wide range of associations, and any attempt at definition will miss many of these, resulting in brittleness. Human flexibility in symbol usage is possible because our symbols are learned from a vast experience of the world. Here we propose the very first steps towards a process by which CAD systems may acquire symbols is by learning usage patterns or image schemas grounded on experience. Subsequently, more abstract symbols may be derived based on these grounded symbols, which thereby retain the flexibility inherent in a learning system. In many design tasks, the “good designs” lie along regions that can be mapped to lower dimensional surfaces or manifolds, owing to latent interdependencies between the variables. These low-dimensional structures (sometimes called chunks) may constitute the intermediate step between the raw experience and the eventual symbol that arises after these patterns become stabilized through communication. In a multi-functional design scenario, we use a locally linear embedding (LLE) to discover these manifolds, which are compact descriptions for the space of “good designs”. We illustrate the approach with a simple 2-parameter latch-and-bolt design, and with a 8-parameter universal motor.


2008 ◽  
Author(s):  
D. L. McMullin ◽  
A. R. Jacobsen ◽  
D. C. Carvan ◽  
R. J. Gardner ◽  
J. A. Goegan ◽  
...  

Author(s):  
ROTHKÖTTER Stefanie ◽  
Craig C. GARNER ◽  
Sándor VAJNA

In light of a growing research interest in the innovation potential that lies at the inter­section of design, technology, and science, this paper offers a literature review of design initiatives centered on scientific discovery and invention. The focus of this paper is on evidence of design capabilities in the academic research environment. The results are structured along the Four Orders of Design, with examples of design-in-science initiatives ranging from (1) the design of scientific figures and (2) laboratory devices using new technology to (3) interactions in design workshops for scientists and (4) inter­disciplinary design labs. While design capabilities have appeared in all four orders of design, there are barriers and cultural constraints that have to be taken into account for working at or researching these creative intersections. Modes of design integration and potentially necessary adaptations of design practice are therefore also highlighted.


2000 ◽  
Vol 626 ◽  
Author(s):  
Harald Beyer ◽  
Joachim Nurnus ◽  
Harald Böttner ◽  
Armin Lambrecht ◽  
Lothar Schmitt ◽  
...  

ABSTRACTThermoelectric properties of low dimensional structures based on PbTe/PbSrTe-multiple quantum-well (MQW)-structures with regard to the structural dimensions, doping profiles and levels are presented. Interband transition energies and barrier band-gap are determined from IR-transmission spectra and compared with Kronig-Penney calculations. The influence of the data evaluation method to obtain the 2D power factor will be discussed. The thermoelectrical data of our layers show a more modest enhancement in the power factor σS2 compared with former publications and are in good agreement with calculated data from Broido et al. [5]. The maximum allowed doping level for modulation doped MQW structures is determined. Thermal conductivity measurements show that a ZT enhancement can be achieved by reducing the thermal conductivity due to interface scattering. Additionally promising lead chalcogenide based superlattices for an increased 3D figure of merit are presented.


Sign in / Sign up

Export Citation Format

Share Document