Characterization of In Vivo Protein Complexes via Chemical Cross-Linking and Mass Spectrometry

Author(s):  
Yuefan Wang ◽  
Yingwei Hu ◽  
Naseruddin Höti ◽  
Lan Huang ◽  
Hui Zhang
2020 ◽  
Author(s):  
Xingyu Liu ◽  
Ying Zhang ◽  
Zhihui Wen ◽  
Yan Hao ◽  
Charles A.S. Banks ◽  
...  

AbstractStreamlined characterization of protein complexes remains a challenge for the study of protein interaction networks. Here, we describe Serial Capture Affinity Purification (SCAP) where two separate proteins are tagged with either the HaloTag or the SNAP-tag, permitting a multi-step affinity enrichment of specific protein complexes. The multifunctional capabilities of these protein tagging systems also permit in vivo validation of interactions using FRET and FCCS quantitative imaging. When coupling SCAP to cross-linking mass spectrometry, an integrated structural model of the complex of interest can be generated. We demonstrate this approach using the Spindlin1 and SPINDOC chromatin associated protein complex, culminating in a structural model with two SPINDOC docked on one SPIN1 molecule. In this model, SPINDOC interacts with the SPIN1 interface previously shown to bind a lysine and arginine methylated sequence of histone H3 Taken together, we present an integrated affinity purification, live cell imaging, and cross linking mass spectrometry approach for the building of integrative structural models of protein complexes.


Author(s):  
Lucía Quintana-Gallardo ◽  
Moisés Maestro-López ◽  
Jaime Martín-Benito ◽  
Miguel Marcilla ◽  
Daniel Rutz ◽  
...  

2020 ◽  
Vol 117 (50) ◽  
pp. 31861-31870
Author(s):  
Xingyu Liu ◽  
Ying Zhang ◽  
Zhihui Wen ◽  
Yan Hao ◽  
Charles A. S. Banks ◽  
...  

Streamlined characterization of protein complexes remains a challenge for the study of protein interaction networks. Here we describe serial capture affinity purification (SCAP), in which two separate proteins are tagged with either the HaloTag or the SNAP-tag, permitting a multistep affinity enrichment of specific protein complexes. The multifunctional capabilities of this protein-tagging system also permit in vivo validation of interactions using acceptor photobleaching Förster resonance energy transfer and fluorescence cross-correlation spectroscopy quantitative imaging. By coupling SCAP to cross-linking mass spectrometry, an integrative structural model of the complex of interest can be generated. We demonstrate this approach using the Spindlin1 and SPINDOC protein complex, culminating in a structural model with two SPINDOC molecules docked on one SPIN1 molecule. In this model, SPINDOC interacts with the SPIN1 interface previously shown to bind a lysine and arginine methylated sequence of histone H3. Our approach combines serial affinity purification, live cell imaging, and cross-linking mass spectrometry to build integrative structural models of protein complexes.


2014 ◽  
Vol 111 (26) ◽  
pp. 9455-9460 ◽  
Author(s):  
Alexander Leitner ◽  
Lukasz A. Joachimiak ◽  
Pia Unverdorben ◽  
Thomas Walzthoeni ◽  
Judith Frydman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document