Surface-Induced Dissociation Mass Spectra as a Tool for Distinguishing Different Structural Forms of Gas-Phase Multimeric Protein Complexes

2015 ◽  
Vol 87 (23) ◽  
pp. 11879-11886 ◽  
Author(s):  
Royston S. Quintyn ◽  
Mowei Zhou ◽  
Jing Yan ◽  
Vicki H. Wysocki
2015 ◽  
Vol 88 (2) ◽  
pp. 1218-1221 ◽  
Author(s):  
Sophie R. Harvey ◽  
Jing Yan ◽  
Jeffery M. Brown ◽  
Emmy Hoyes ◽  
Vicki H. Wysocki

Author(s):  
Sebastian Wawrocki ◽  
Magdalena Druszczynska

The development of effective innate and subsequent adaptive host immune responses is highly dependent on the production of proinflammatory cytokines that increase the activity of immune cells. The key role in this process is played by inflammasomes, multimeric protein complexes serving as a platform for caspase-1, an enzyme responsible for proteolytic cleavage of IL-1βand IL-18 precursors. Inflammasome activation, which triggers the multifaceted activity of these two proinflammatory cytokines, is a prerequisite for developing an efficient inflammatory response against pathogenicMycobacterium tuberculosis(M.tb). This review focuses on the role of NLRP3 and AIM2 inflammasomes inM.tb-driven immunity.


2018 ◽  
Vol 475 (21) ◽  
pp. 3311-3314 ◽  
Author(s):  
Puran Singh Sijwali

The evasion of host immune defense is critical for pathogens to invade, establish infection and perpetuate in the host. The complement system is one of the first lines of innate immune defense in humans that destroys pathogens in the blood circulation. Activation of the complement system through direct encounter with pathogens or some other agents leads to osmolysis of pathogens, clearance of soluble immune complexes and recruitment of lymphocytes at the site of activation. Although malaria parasites are not exposed to the complement system owing to their intracellular development for most part of their life cycle in the human host, the extracellular stages must face the complement system of human or mosquito or both. In a recent issue of the Biochemical Journal, Sharma et al. reported that Plasmodiumfalciparum LCCL domain-containing protein 1 (PfCCp1) inhibited activation of the classical complement pathway and down-regulated effector responses of dendritic cells, which implicate PfCCp1 and related proteins in immunomodulation of the host that likely benefits the parasite. PfCCp1 belongs to a multi-domain protein family that exists as multimeric protein complexes. It needs to be investigated whether PfCCp1 or its multimeric protein complexes have an immunomodulatory effect in vivo and on the mosquito complement system


2022 ◽  
Author(s):  
Ikuo Kurisaki ◽  
Shigenori Tanaka

The physicochemical entity of biological phenomenon in the cell is a network of biochemical reactions and the activity of such a network is regulated by multimeric protein complexes. Mass spectroscopy (MS) experiments and multimeric protein docking simulations based on structural bioinformatics techniques have revealed the molecular-level stoichiometry and static configuration of subcomplexes in their bound forms, then revealing the subcomplex populations and formation orders. Meanwhile, these methodologies are not designed to straightforwardly examine temporal dynamics of multimeric protein assembly and disassembly, essential physicochemical properties to understand functional expression mechanisms of proteins in the biological environment. To address the problem, we had developed an atomistic simulation in the framework of the hybrid Monte Carlo/Molecular Dynamics (hMC/MD) method and succeeded in observing disassembly of homomeric pentamer of the serum amyloid P component protein in experimentally consistent order. In this study, we improved the hMC/MD method to examine disassembly processes of the tryptophan synthase tetramer, a paradigmatic heteromeric protein complex in MS studies. We employed the likelihood-based selection scheme to determine a dissociation-prone subunit pair at each hMC/MD simulation cycle and achieved highly reliable predictions of the disassembly orders with the success rate over 0.9 without a priori knowledge of the MS experiments and structural bioinformatics simulations. We similarly succeeded in reliable predictions for the other three tetrameric protein complexes. These achievements indicate the potential availability of our hMC/MD approach as the general purpose methodology to obtain microscopic and physicochemical insights into multimeric protein complex formation.


Sign in / Sign up

Export Citation Format

Share Document