Integration of Molecular Networking and In-Silico MS/MS Fragmentation for Natural Products Dereplication

2016 ◽  
Vol 88 (6) ◽  
pp. 3317-3323 ◽  
Author(s):  
Pierre-Marie Allard ◽  
Tiphaine Péresse ◽  
Jonathan Bisson ◽  
Katia Gindro ◽  
Laurence Marcourt ◽  
...  
Planta Medica ◽  
2016 ◽  
Vol 81 (S 01) ◽  
pp. S1-S381
Author(s):  
PM Allard ◽  
T Péresse ◽  
J Bisson ◽  
K Gindro ◽  
L Marcourt ◽  
...  

2020 ◽  
Author(s):  
A. KARUPPUSAMY ◽  
F. F. FIGUEIREDO ◽  
Domingos Tabajara de Oliveira MARTINS ◽  
N.Z.T. JESUS ◽  
A.M. CARABALLO-RODRÍGUEZ

2015 ◽  
Vol 15 (3) ◽  
pp. 253-269 ◽  
Author(s):  
L. Scotti ◽  
H. Ishiki ◽  
F.J.B. Mendonca ◽  
M.S. Silva ◽  
M.T. Scotti

Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 216
Author(s):  
Nadia A. Rivero-Segura ◽  
Juan C. Gomez-Verjan

The COVID-19 pandemic has already taken the lives of more than 2 million people worldwide, causing several political and socio-economic disturbances in our daily life. At the time of publication, there are non-effective pharmacological treatments, and vaccine distribution represents an important challenge for all countries. In this sense, research for novel molecules becomes essential to develop treatments against the SARS-CoV-2 virus. In this context, Mexican natural products have proven to be quite useful for drug development; therefore, in the present study, we perform an in silico screening of 100 compounds isolated from the most commonly used Mexican plants, against the SARS-CoV-2 virus. As results, we identify ten compounds that meet leadlikeness criteria (emodin anthrone, kaempferol, quercetin, aesculin, cichoriin, luteolin, matricin, riolozatrione, monocaffeoyl tartaric acid, aucubin). According to the docking analysis, only three compounds target the key proteins of SARS-CoV-2 (quercetin, riolozatrione and cichoriin), but only one appears to be safe (cichoriin). ADME (absorption, distribution, metabolism and excretion) properties and the physiologically based pharmacokinetic (PBPK) model show that cichoriin reaches higher lung levels (100 mg/Kg, IV); therefore, it may be considered in developing therapeutic tools.


mSystems ◽  
2018 ◽  
Vol 3 (2) ◽  
Author(s):  
Daniela B. B. Trivella ◽  
Rafael de Felicio

ABSTRACT Natural products are the richest source of chemical compounds for drug discovery. Particularly, bacterial secondary metabolites are in the spotlight due to advances in genome sequencing and mining, as well as for the potential of biosynthetic pathway manipulation to awake silent (cryptic) gene clusters under laboratory cultivation. Further progress in compound detection, such as the development of the tandem mass spectrometry (MS/MS) molecular networking approach, has contributed to the discovery of novel bacterial natural products. The latter can be applied directly to bacterial crude extracts for identifying and dereplicating known compounds, therefore assisting the prioritization of extracts containing novel natural products, for example. In our opinion, these three approaches—genome mining, silent pathway induction, and MS-based molecular networking—compose the tripod for modern bacterial natural product discovery and will be discussed in this perspective.


2021 ◽  
Author(s):  
Daniel Petras ◽  
Andrés Mauricio Caraballo-Rodríguez ◽  
Alan K. Jarmusch ◽  
Carlos Molina-Santiago ◽  
Julia M. Gauglitz ◽  
...  

Molecular networking of non-targeted tandem mass spectrometry data connects structurally related molecules based on similar fragmentation spectra. Here we report the Chemical Proportionality contextualization of molecular networks. ChemProp scores the changes of abundance between two connected nodes over sequential data series which can be displayed as a direction within the network to prioritize potential biological and chemical transformations or proportional changes of related compounds. We tested the ChemProp workflow on a ground truth data set of defined mixture and highlighted the utility of the tool to prioritize specific molecules within biological samples, including bacterial transformations of bile acids, human drug metabolism and bacterial natural products biosynthesis. The ChemProp workflow is freely available through the Global Natural Products Social Molecular Networking environment.<br><b> </b>


2020 ◽  
Vol 24 ◽  
pp. 101559
Author(s):  
Ricardo P. Rodrigues ◽  
Adriano C.M. Baroni ◽  
Carlos A. Carollo ◽  
Daniel P. Demarque ◽  
Luís F.L. Pardo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document