Integration of molecular networking and in-silico MS/MS fragmentation for sensitive high throughput natural products dereplication

Planta Medica ◽  
2016 ◽  
Vol 81 (S 01) ◽  
pp. S1-S381 ◽  
Author(s):  
JL Wolfender ◽  
PM Allard
2020 ◽  
Vol 15 (9) ◽  
pp. 1934578X2095326
Author(s):  
Jai-Sing Yang ◽  
Jo-Hua Chiang ◽  
Shih‑Chang Tsai ◽  
Yuan-Man Hsu ◽  
Da-Tian Bau ◽  
...  

The coronavirus disease 2019 (COVID‐19) outbreak caused by the 2019 novel coronavirus (2019-nCOV) is becoming increasingly serious. In March 2019, the Food and Drug Administration (FDA) designated remdesivir for compassionate use to treat COVID-19. Thus, the development of novel antiviral agents, antibodies, and vaccines against COVID-19 is an urgent research subject. Many laboratories and research organizations are actively investing in the development of new compounds for COVID-19. Through in silico high-throughput virtual screening, we have recently identified compounds from the compound library of Natural Products Research Laboratories (NPRL) that can bind to COVID-19 3Lpro polyprotein and block COVID-19 3Lpro activity through in silico high-throughput virtual screening. Curcuminoid derivatives (including NPRL334, NPRL339, NPRL342, NPRL346, NPRL407, NPRL415, NPRL420, NPRL472, and NPRL473) display strong binding affinity to COVID-19 3Lpro polyprotein. The binding site of curcuminoid derivatives to COVID-19 3Lpro polyprotein is the same as that of the FDA-approved human immunodeficiency virus protease inhibitor (lopinavir) to COVID-19 3Lpro polyprotein. The binding affinity of curcuminoid derivatives to COVID-19 3Lpro is stronger than that of lopinavir and curcumin. Among curcuminoid derivatives, NPRL-334 revealed the strongest binding affinity to COVID-19 3Lpro polyprotein and is speculated to have an anti-COVID-19 effect. In vitro and in vivo ongoing experiments are currently underway to confirm the present findings. This study sheds light on the drug design for COVID-19 3Lpro polyprotein. Basing on lead compound development, we provide new insights on inhibiting COVID-19 attachment to cells, reducing COVID-19 infection rate and drug side effects, and increasing therapeutic success rate.


2016 ◽  
Vol 88 (6) ◽  
pp. 3317-3323 ◽  
Author(s):  
Pierre-Marie Allard ◽  
Tiphaine Péresse ◽  
Jonathan Bisson ◽  
Katia Gindro ◽  
Laurence Marcourt ◽  
...  

Author(s):  
Mohammad Firoz Khan ◽  
Ridwan Bin Rashid ◽  
Mohammad A. Rashid

Background: Natural products have been a rich source of compounds for drug discovery. Usually, compounds obtained from natural sources have little or no side effects, thus searching for new lead compounds from traditionally used plant species is still a rational strategy. Introduction: Natural products serve as a useful repository of compounds for new drugs; however, their use has been decreasing, in part because of technical barriers to screening natural products in high-throughput assays against molecular targets. To address this unmet demand, we have developed and validated a high throughput in silico machine learning screening method to identify potential compounds from natural sources. Methods: In the current study, three machine learning approaches, including Support Vector Machine (SVM), Random Forest (RF) and Gradient Boosting Machine (GBM) have been applied to develop the classification model. The model was generated using the cyclooxygenase-2 (COX-2) inhibitors reported in the ChEMBL database. The developed model was validated by evaluating the accuracy, sensitivity, specificity, Matthews correlation coefficient and Cohen’s kappa statistic of the test set. The molecular docking study was conducted on AutoDock vina and the results were analyzed in PyMOL. Results: The accuracy of the model for SVM, RF and GBM was found to be 75.40 %, 74.97 % and 74.60 %, respectively which indicates the good performance of the developed model. Further, the model has demonstrated good sensitivity (61.25 % - 68.60 %) and excellent specificity (77.72 %- 81.41 %). Application of the model on the NuBBE database, a repository of natural compounds, led us to identify a natural compound, enhydrin possessing analgesic and anti-inflammatory activities. The ML methods and the molecular docking study suggest that enhydrin likely demonstrates its analgesic and anti-inflammatory actions by inhibiting COX-2. Conclusion: Our developed and validated in silico high throughput ML screening methods may assist in identifying drug-like compounds from natural sources.


Planta Medica ◽  
2016 ◽  
Vol 81 (S 01) ◽  
pp. S1-S381
Author(s):  
PM Allard ◽  
T Péresse ◽  
J Bisson ◽  
K Gindro ◽  
L Marcourt ◽  
...  

2020 ◽  
Author(s):  
A. KARUPPUSAMY ◽  
F. F. FIGUEIREDO ◽  
Domingos Tabajara de Oliveira MARTINS ◽  
N.Z.T. JESUS ◽  
A.M. CARABALLO-RODRÍGUEZ

2015 ◽  
Vol 15 (3) ◽  
pp. 253-269 ◽  
Author(s):  
L. Scotti ◽  
H. Ishiki ◽  
F.J.B. Mendonca ◽  
M.S. Silva ◽  
M.T. Scotti

Sign in / Sign up

Export Citation Format

Share Document